зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 21:46:04 +02:00
7131 строка
180 KiB
Plaintext
7131 строка
180 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# AMMICO Demonstration Notebook\n",
|
||
"With ammico, you can analyze text on images and image content at the same time. This is a demonstration notebook to showcase the capabilities of ammico.\n",
|
||
"You can run this notebook on google colab or locally / on your own HPC resource. The first cell only runs on google colab; on all other machines, you need to create a conda environment first and install ammico from the Python Package Index using \n",
|
||
"```pip install ammico``` \n",
|
||
"Alternatively you can install the development version from the GitHub repository \n",
|
||
"```pip install git+https://github.com/ssciwr/AMMICO.git```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:15:14.769732Z",
|
||
"iopub.status.busy": "2023-12-13T22:15:14.769535Z",
|
||
"iopub.status.idle": "2023-12-13T22:15:14.777224Z",
|
||
"shell.execute_reply": "2023-12-13T22:15:14.776699Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# if running on google colab\n",
|
||
"# flake8-noqa-cell\n",
|
||
"import os\n",
|
||
"\n",
|
||
"if \"google.colab\" in str(get_ipython()):\n",
|
||
" # update python version\n",
|
||
" # install setuptools\n",
|
||
" # %pip install setuptools==61 -qqq\n",
|
||
" # install ammico\n",
|
||
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||
" # mount google drive for data and API key\n",
|
||
" from google.colab import drive\n",
|
||
"\n",
|
||
" drive.mount(\"/content/drive\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Import the ammico package."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:15:14.779771Z",
|
||
"iopub.status.busy": "2023-12-13T22:15:14.779416Z",
|
||
"iopub.status.idle": "2023-12-13T22:15:24.377577Z",
|
||
"shell.execute_reply": "2023-12-13T22:15:24.376973Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import ammico"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Step 1: Read your data into AMMICO\n",
|
||
"The ammico package reads in one or several input files given in a folder for processing. The user can select to read in all image files in a folder, to include subfolders via the `recursive` option, and can select the file extension that should be considered (for example, only \"jpg\" files, or both \"jpg\" and \"png\" files). For reading in the files, the ammico function `find_files` is used, with optional keywords:\n",
|
||
"\n",
|
||
"| input key | input type | possible input values |\n",
|
||
"| --------- | ---------- | --------------------- |\n",
|
||
"`path` | `str` | the directory containing the image files (defaults to the location set by environment variable `AMMICO_DATA_HOME`) |\n",
|
||
"| `pattern` | `str\\|list` | the file extensions to consider (defaults to \"png\", \"jpg\", \"jpeg\", \"gif\", \"webp\", \"avif\", \"tiff\") |\n",
|
||
"| `recursive` | `bool` | include subdirectories recursively (defaults to `True`) |\n",
|
||
"| `limit` | `int` | maximum number of files to read (defaults to `20`, for all images set to `None` or `-1`) |\n",
|
||
"| `random_seed` | `str` | the random seed for shuffling the images; applies when only a few images are read and the selection should be preserved (defaults to `None`) |\n",
|
||
"\n",
|
||
"The `find_files` function returns a nested dict that contains the file ids and the paths to the files and is empty otherwise. This dict is filled step by step with more data as each detector class is run on the data (see below)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:15:24.380728Z",
|
||
"iopub.status.busy": "2023-12-13T22:15:24.380100Z",
|
||
"iopub.status.idle": "2023-12-13T22:15:24.384980Z",
|
||
"shell.execute_reply": "2023-12-13T22:15:24.384471Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"image_dict = ammico.find_files(\n",
|
||
" path=\"data/\",\n",
|
||
" limit=10,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 2: Inspect the input files using the graphical user interface\n",
|
||
"A Dash user interface is to select the most suitable options for the analysis, before running a complete analysis on the whole data set. The options for each detector module are explained below in the corresponding sections; for example, different models can be selected that will provide slightly different results. This way, the user can interactively explore which settings provide the most accurate results. In the interface, the nested `image_dict` is passed through the `AnalysisExplorer` class. The interface is run on a specific port which is passed using the `port` keyword; if a port is already in use, it will return an error message, in which case the user should select a different port number. \n",
|
||
"The interface opens a dash app inside the Jupyter Notebook and allows selection of the input file in the top left dropdown menu, as well as selection of the detector type in the top right, with options for each detector type as explained below. The output of the detector is shown directly on the right next to the image. This way, the user can directly inspect how updating the options for each detector changes the computed results, and find the best settings for a production run.\n",
|
||
"\n",
|
||
"Please note that for the Google Cloud Vision API (the TextDetector class) you need to set a key in order to process the images. This key is ideally set as an environment variable using for example\n",
|
||
"```\n",
|
||
"os.environ[\n",
|
||
" \"GOOGLE_APPLICATION_CREDENTIALS\"\n",
|
||
"] = \"/content/drive/MyDrive/misinformation-data/misinformation-campaign-981aa55a3b13.json\"\n",
|
||
"```\n",
|
||
"where you place the key on your Google Drive if running on colab, or place it in a local folder on your machine."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:15:24.387689Z",
|
||
"iopub.status.busy": "2023-12-13T22:15:24.387310Z",
|
||
"iopub.status.idle": "2023-12-13T22:15:24.412544Z",
|
||
"shell.execute_reply": "2023-12-13T22:15:24.411820Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"\n",
|
||
" <iframe\n",
|
||
" width=\"100%\"\n",
|
||
" height=\"650\"\n",
|
||
" src=\"http://127.0.0.1:8055/\"\n",
|
||
" frameborder=\"0\"\n",
|
||
" allowfullscreen\n",
|
||
" \n",
|
||
" ></iframe>\n",
|
||
" "
|
||
],
|
||
"text/plain": [
|
||
"<IPython.lib.display.IFrame at 0x7fd4d6d35e20>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"analysis_explorer = ammico.AnalysisExplorer(image_dict)\n",
|
||
"analysis_explorer.run_server(port=8055)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 3: Analyze all images\n",
|
||
"After having selected the best options for each detector module from the interactive GUI, the analysis can now be run in production on all images in the data set. Depending on the size of the data set and the computing resources available, this can take some time. Please note that you need to have set your Google Cloud Vision API key for the TextDetector to run.\n",
|
||
"The desired detector modules are called sequentially in any order, for example:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:15:24.454100Z",
|
||
"iopub.status.busy": "2023-12-13T22:15:24.453549Z",
|
||
"iopub.status.idle": "2023-12-13T22:17:16.365830Z",
|
||
"shell.execute_reply": "2023-12-13T22:17:16.365206Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Collecting en-core-web-md==3.7.1\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.7.1/en_core_web_md-3.7.1-py3-none-any.whl (42.8 MB)\n",
|
||
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/42.8 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.9/42.8 MB\u001b[0m \u001b[31m26.2 MB/s\u001b[0m eta \u001b[36m0:00:02\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.4/42.8 MB\u001b[0m \u001b[31m93.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.1/42.8 MB\u001b[0m \u001b[31m164.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.7/42.8 MB\u001b[0m \u001b[31m165.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.3/42.8 MB\u001b[0m \u001b[31m163.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━\u001b[0m \u001b[32m28.1/42.8 MB\u001b[0m \u001b[31m153.3 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━\u001b[0m \u001b[32m33.7/42.8 MB\u001b[0m \u001b[31m152.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━\u001b[0m \u001b[32m39.3/42.8 MB\u001b[0m \u001b[31m162.9 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m42.8/42.8 MB\u001b[0m \u001b[31m163.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m42.8/42.8 MB\u001b[0m \u001b[31m163.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m42.8/42.8 MB\u001b[0m \u001b[31m163.6 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r",
|
||
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m42.8/42.8 MB\u001b[0m \u001b[31m64.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
||
"\u001b[?25h"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Requirement already satisfied: spacy<3.8.0,>=3.7.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from en-core-web-md==3.7.1) (3.7.2)\n",
|
||
"Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.0.12)\n",
|
||
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.0.5)\n",
|
||
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.0.10)\n",
|
||
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.0.8)\n",
|
||
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.0.9)\n",
|
||
"Requirement already satisfied: thinc<8.3.0,>=8.1.8 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (8.2.1)\n",
|
||
"Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.1.2)\n",
|
||
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.4.8)\n",
|
||
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.0.10)\n",
|
||
"Requirement already satisfied: weasel<0.4.0,>=0.1.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.3.4)\n",
|
||
"Requirement already satisfied: typer<0.10.0,>=0.3.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.9.0)\n",
|
||
"Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (6.4.0)\n",
|
||
"Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (4.66.1)\n",
|
||
"Requirement already satisfied: requests<3.0.0,>=2.13.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.31.0)\n",
|
||
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.10.13)\n",
|
||
"Requirement already satisfied: jinja2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.1.2)\n",
|
||
"Requirement already satisfied: setuptools in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (58.1.0)\n",
|
||
"Requirement already satisfied: packaging>=20.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (23.2)\n",
|
||
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.3.0)\n",
|
||
"Requirement already satisfied: numpy>=1.19.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (1.23.4)\n",
|
||
"Requirement already satisfied: typing-extensions>=4.2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from pydantic!=1.8,!=1.8.1,<3.0.0,>=1.7.4->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (4.5.0)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (3.3.2)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.1.0)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2023.11.17)\n",
|
||
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from thinc<8.3.0,>=8.1.8->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.7.11)\n",
|
||
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from thinc<8.3.0,>=8.1.8->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.1.4)\n",
|
||
"Requirement already satisfied: click<9.0.0,>=7.1.1 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from typer<0.10.0,>=0.3.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (8.1.7)\n",
|
||
"Requirement already satisfied: cloudpathlib<0.17.0,>=0.7.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from weasel<0.4.0,>=0.1.0->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (0.16.0)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/hostedtoolcache/Python/3.9.18/x64/lib/python3.9/site-packages (from jinja2->spacy<3.8.0,>=3.7.2->en-core-web-md==3.7.1) (2.1.3)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Installing collected packages: en-core-web-md\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Successfully installed en-core-web-md-3.7.1\n",
|
||
"\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
|
||
"You can now load the package via spacy.load('en_core_web_md')\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n",
|
||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.1\u001b[0m\n",
|
||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 0%| | 0.00/1.80k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 100%|██████████| 1.80k/1.80k [00:00<00:00, 992kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 0%| | 0.00/1.22G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 2%|▏ | 21.0M/1.22G [00:00<00:07, 168MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 4%|▍ | 52.4M/1.22G [00:00<00:05, 213MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 7%|▋ | 83.9M/1.22G [00:00<00:05, 221MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 9%|▉ | 115M/1.22G [00:00<00:04, 235MB/s] "
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 12%|█▏ | 147M/1.22G [00:00<00:04, 239MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 15%|█▍ | 178M/1.22G [00:00<00:04, 242MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 17%|█▋ | 210M/1.22G [00:00<00:04, 243MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 20%|█▉ | 241M/1.22G [00:01<00:04, 245MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 22%|██▏ | 273M/1.22G [00:01<00:03, 242MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 25%|██▍ | 304M/1.22G [00:01<00:03, 247MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 27%|██▋ | 336M/1.22G [00:01<00:03, 250MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 30%|███ | 367M/1.22G [00:01<00:03, 255MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 33%|███▎ | 398M/1.22G [00:01<00:03, 251MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 35%|███▌ | 430M/1.22G [00:01<00:03, 253MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 38%|███▊ | 461M/1.22G [00:01<00:03, 246MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 40%|████ | 493M/1.22G [00:02<00:02, 249MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 43%|████▎ | 524M/1.22G [00:02<00:02, 254MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 45%|████▌ | 556M/1.22G [00:02<00:02, 255MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 48%|████▊ | 587M/1.22G [00:02<00:02, 259MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 51%|█████ | 619M/1.22G [00:02<00:02, 261MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 53%|█████▎ | 650M/1.22G [00:02<00:02, 263MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 56%|█████▌ | 682M/1.22G [00:02<00:02, 262MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 58%|█████▊ | 713M/1.22G [00:02<00:01, 264MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 61%|██████ | 744M/1.22G [00:02<00:01, 265MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 63%|██████▎ | 776M/1.22G [00:03<00:01, 266MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 66%|██████▌ | 807M/1.22G [00:03<00:01, 265MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 69%|██████▊ | 839M/1.22G [00:03<00:01, 265MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 71%|███████ | 870M/1.22G [00:03<00:01, 267MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 74%|███████▍ | 902M/1.22G [00:03<00:01, 268MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 76%|███████▋ | 933M/1.22G [00:03<00:01, 270MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 79%|███████▉ | 965M/1.22G [00:03<00:00, 271MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 81%|████████▏ | 996M/1.22G [00:03<00:00, 270MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 84%|████████▍ | 1.03G/1.22G [00:04<00:00, 268MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 87%|████████▋ | 1.06G/1.22G [00:04<00:00, 271MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 89%|████████▉ | 1.09G/1.22G [00:04<00:00, 269MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 92%|█████████▏| 1.12G/1.22G [00:04<00:00, 270MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 94%|█████████▍| 1.15G/1.22G [00:04<00:00, 270MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 97%|█████████▋| 1.18G/1.22G [00:04<00:00, 266MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 100%|█████████▉| 1.22G/1.22G [00:04<00:00, 263MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 100%|██████████| 1.22G/1.22G [00:04<00:00, 256MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 100%|██████████| 26.0/26.0 [00:00<00:00, 29.5kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 5.05MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 4.99MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.59MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 2.57MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 0%| | 0.00/629 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 100%|██████████| 629/629 [00:00<00:00, 751kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 0%| | 0.00/268M [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 4%|▍ | 10.5M/268M [00:00<00:05, 44.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 16%|█▌ | 41.9M/268M [00:00<00:01, 145MB/s] "
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 31%|███▏ | 83.9M/268M [00:00<00:00, 215MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 43%|████▎ | 115M/268M [00:00<00:00, 244MB/s] "
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 55%|█████▍ | 147M/268M [00:00<00:00, 263MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 67%|██████▋ | 178M/268M [00:00<00:00, 276MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 82%|████████▏ | 220M/268M [00:00<00:00, 289MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 98%|█████████▊| 262M/268M [00:01<00:00, 299MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 100%|██████████| 268M/268M [00:01<00:00, 249MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 59.0kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 3.96MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 0%| | 0.00/998 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 100%|██████████| 998/998 [00:00<00:00, 1.17MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 0%| | 0.00/1.33G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 3%|▎ | 41.9M/1.33G [00:00<00:04, 320MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 6%|▋ | 83.9M/1.33G [00:00<00:04, 297MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 9%|▊ | 115M/1.33G [00:00<00:04, 287MB/s] "
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 11%|█ | 147M/1.33G [00:00<00:04, 287MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 13%|█▎ | 178M/1.33G [00:00<00:04, 285MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 16%|█▌ | 210M/1.33G [00:00<00:04, 280MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 18%|█▊ | 241M/1.33G [00:00<00:03, 275MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 20%|██ | 273M/1.33G [00:00<00:03, 281MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 23%|██▎ | 304M/1.33G [00:01<00:03, 283MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 25%|██▌ | 336M/1.33G [00:01<00:03, 287MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 28%|██▊ | 367M/1.33G [00:01<00:03, 282MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 30%|██▉ | 398M/1.33G [00:01<00:03, 286MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 32%|███▏ | 430M/1.33G [00:01<00:03, 285MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 35%|███▍ | 461M/1.33G [00:01<00:03, 289MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 37%|███▋ | 493M/1.33G [00:01<00:02, 290MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 39%|███▉ | 524M/1.33G [00:01<00:02, 288MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 42%|████▏ | 556M/1.33G [00:01<00:02, 288MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 44%|████▍ | 587M/1.33G [00:02<00:02, 286MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 46%|████▋ | 619M/1.33G [00:02<00:02, 281MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 49%|████▊ | 650M/1.33G [00:02<00:02, 282MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 51%|█████ | 682M/1.33G [00:02<00:02, 284MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 53%|█████▎ | 713M/1.33G [00:02<00:02, 285MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 56%|█████▌ | 744M/1.33G [00:02<00:02, 285MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 58%|█████▊ | 776M/1.33G [00:02<00:01, 287MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 61%|██████ | 807M/1.33G [00:02<00:01, 285MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 63%|██████▎ | 839M/1.33G [00:02<00:01, 287MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 65%|██████▌ | 870M/1.33G [00:03<00:01, 285MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 68%|██████▊ | 902M/1.33G [00:03<00:01, 291MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 70%|██████▉ | 933M/1.33G [00:03<00:01, 292MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 72%|███████▏ | 965M/1.33G [00:03<00:01, 296MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 75%|███████▍ | 996M/1.33G [00:03<00:01, 295MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 77%|███████▋ | 1.03G/1.33G [00:03<00:01, 296MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 79%|███████▉ | 1.06G/1.33G [00:03<00:00, 290MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 82%|████████▏ | 1.09G/1.33G [00:03<00:00, 291MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 84%|████████▍ | 1.12G/1.33G [00:03<00:00, 286MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 86%|████████▋ | 1.15G/1.33G [00:04<00:00, 289MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 89%|████████▉ | 1.18G/1.33G [00:04<00:00, 289MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 91%|█████████ | 1.22G/1.33G [00:04<00:00, 290MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 94%|█████████▎| 1.25G/1.33G [00:04<00:00, 291MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 96%|█████████▌| 1.28G/1.33G [00:04<00:00, 294MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 98%|█████████▊| 1.31G/1.33G [00:04<00:00, 291MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"pytorch_model.bin: 100%|██████████| 1.33G/1.33G [00:04<00:00, 286MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 0%| | 0.00/60.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 100%|██████████| 60.0/60.0 [00:00<00:00, 68.9kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 0%| | 0.00/213k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.81MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.79MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/retinaface.h5' to file '/home/runner/.cache/pooch/3be32af6e4183fa0156bc33bda371147-retinaface.h5'.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading data from 'https://github.com/chandrikadeb7/Face-Mask-Detection/raw/v1.0.0/mask_detector.model' to file '/home/runner/.cache/pooch/865b4b1e20f798935b70082440d5fb21-mask_detector.model'.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 1s 516ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5' to file '/home/runner/.cache/pooch/39859d3331cd91ac06154cc306e1acc8-age_model_weights.h5'.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5' to file '/home/runner/.cache/pooch/dd5d5d6d8f5cecdc0fa6cb34d4d82d16-facial_expression_model_weights.h5'.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5' to file '/home/runner/.cache/pooch/2e0d8fb96c5ee966ade0f3f2360f6478-gender_model_weights.h5'.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading data from 'https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5' to file '/home/runner/.cache/pooch/382cb5446128012fa5305ddb9d608751-race_model_single_batch.h5'.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 360ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 332ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 331ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 75ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 1s 988ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 222ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 216ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 1s 518ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 222ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 210ms/step\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for key in image_dict.keys():\n",
|
||
" image_dict[key] = ammico.TextDetector(image_dict[key], analyse_text=True).analyse_image()\n",
|
||
" image_dict[key] = ammico.EmotionDetector(image_dict[key]).analyse_image()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"For the computationally demanding `SummaryDetector`, it is best to initialize the model first and then analyze each image while passing the model explicitly. This can be done in a separate loop or in the same loop as for text and emotion detection."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:17:16.368583Z",
|
||
"iopub.status.busy": "2023-12-13T22:17:16.368187Z",
|
||
"iopub.status.idle": "2023-12-13T22:19:40.110554Z",
|
||
"shell.execute_reply": "2023-12-13T22:19:40.109849Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 50.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"tokenizer_config.json: 100%|██████████| 28.0/28.0 [00:00<00:00, 37.3kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 0%| | 0.00/570 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"config.json: 100%|██████████| 570/570 [00:00<00:00, 755kB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 0%| | 0.00/2.50G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 0%| | 4.01M/2.50G [00:00<01:19, 33.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 0%| | 8.01M/2.50G [00:00<01:35, 28.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%| | 16.0M/2.50G [00:00<01:03, 42.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%| | 21.7M/2.50G [00:00<00:56, 47.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%| | 27.0M/2.50G [00:00<00:53, 49.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%|▏ | 32.3M/2.50G [00:00<00:51, 51.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 39.8M/2.50G [00:00<00:44, 59.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 45.6M/2.50G [00:00<00:46, 56.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 51.2M/2.50G [00:01<00:46, 57.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 56.7M/2.50G [00:01<00:49, 52.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 64.0M/2.50G [00:01<00:46, 56.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 70.4M/2.50G [00:01<00:43, 59.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 76.1M/2.50G [00:01<00:44, 58.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 81.8M/2.50G [00:01<00:46, 55.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 88.0M/2.50G [00:01<00:48, 53.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 4%|▎ | 95.3M/2.50G [00:01<00:43, 59.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 4%|▍ | 101M/2.50G [00:01<00:45, 57.0MB/s] "
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 4%|▍ | 107M/2.50G [00:02<00:43, 58.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 4%|▍ | 114M/2.50G [00:02<00:40, 63.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 5%|▍ | 121M/2.50G [00:02<00:40, 63.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 5%|▌ | 128M/2.50G [00:02<00:37, 68.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 5%|▌ | 135M/2.50G [00:02<00:37, 68.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▌ | 141M/2.50G [00:02<00:38, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▌ | 148M/2.50G [00:02<00:38, 66.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▌ | 156M/2.50G [00:02<00:35, 70.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▋ | 163M/2.50G [00:02<00:34, 73.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 7%|▋ | 171M/2.50G [00:02<00:33, 75.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 7%|▋ | 178M/2.50G [00:03<00:33, 74.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 7%|▋ | 185M/2.50G [00:03<00:34, 72.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 8%|▊ | 192M/2.50G [00:03<00:33, 73.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 8%|▊ | 200M/2.50G [00:03<00:33, 74.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 8%|▊ | 207M/2.50G [00:03<00:33, 74.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 8%|▊ | 214M/2.50G [00:03<00:33, 73.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 9%|▊ | 221M/2.50G [00:03<00:33, 73.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 9%|▉ | 228M/2.50G [00:03<00:35, 69.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 9%|▉ | 235M/2.50G [00:03<00:35, 69.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 9%|▉ | 242M/2.50G [00:04<00:39, 61.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 10%|▉ | 248M/2.50G [00:04<00:37, 64.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 10%|▉ | 256M/2.50G [00:04<00:37, 64.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 10%|█ | 264M/2.50G [00:04<00:35, 67.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 11%|█ | 271M/2.50G [00:04<00:35, 67.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 11%|█ | 278M/2.50G [00:04<00:34, 68.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 11%|█ | 284M/2.50G [00:04<00:35, 67.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 11%|█▏ | 291M/2.50G [00:04<00:34, 69.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 298M/2.50G [00:05<00:41, 57.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 304M/2.50G [00:05<00:40, 57.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 311M/2.50G [00:05<00:38, 62.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 317M/2.50G [00:05<00:40, 58.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 13%|█▎ | 323M/2.50G [00:05<00:39, 59.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 13%|█▎ | 330M/2.50G [00:05<00:36, 64.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 13%|█▎ | 337M/2.50G [00:05<00:42, 54.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 13%|█▎ | 344M/2.50G [00:05<00:39, 58.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 14%|█▎ | 351M/2.50G [00:05<00:36, 63.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 14%|█▍ | 358M/2.50G [00:06<00:36, 62.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 14%|█▍ | 365M/2.50G [00:06<00:34, 66.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 14%|█▍ | 372M/2.50G [00:06<00:37, 62.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 15%|█▍ | 379M/2.50G [00:06<00:34, 65.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 15%|█▌ | 386M/2.50G [00:06<00:32, 69.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 15%|█▌ | 393M/2.50G [00:06<00:34, 66.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 16%|█▌ | 400M/2.50G [00:06<00:32, 69.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 16%|█▌ | 408M/2.50G [00:06<00:31, 71.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 16%|█▌ | 416M/2.50G [00:06<00:30, 74.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 16%|█▋ | 423M/2.50G [00:07<00:35, 63.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 17%|█▋ | 431M/2.50G [00:07<00:32, 69.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 17%|█▋ | 438M/2.50G [00:07<00:32, 67.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 17%|█▋ | 446M/2.50G [00:07<00:30, 72.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 18%|█▊ | 453M/2.50G [00:07<00:37, 58.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 18%|█▊ | 459M/2.50G [00:07<00:36, 60.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 18%|█▊ | 467M/2.50G [00:07<00:33, 65.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 18%|█▊ | 473M/2.50G [00:07<00:33, 66.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 19%|█▉ | 481M/2.50G [00:07<00:30, 70.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 19%|█▉ | 488M/2.50G [00:08<00:32, 66.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 19%|█▉ | 496M/2.50G [00:08<00:35, 61.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 20%|█▉ | 503M/2.50G [00:08<00:33, 65.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 20%|█▉ | 510M/2.50G [00:08<00:38, 56.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 20%|██ | 516M/2.50G [00:08<00:46, 46.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 20%|██ | 523M/2.50G [00:08<00:40, 53.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 21%|██ | 529M/2.50G [00:08<00:40, 53.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 21%|██ | 536M/2.50G [00:08<00:35, 59.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 21%|██ | 544M/2.50G [00:09<00:34, 61.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 21%|██▏ | 551M/2.50G [00:09<00:32, 64.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 558M/2.50G [00:09<00:32, 65.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 564M/2.50G [00:09<00:32, 63.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 570M/2.50G [00:09<00:37, 55.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 576M/2.50G [00:09<00:39, 52.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 23%|██▎ | 582M/2.50G [00:09<00:37, 55.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 23%|██▎ | 589M/2.50G [00:09<00:34, 60.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 23%|██▎ | 596M/2.50G [00:10<00:32, 63.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 24%|██▎ | 602M/2.50G [00:10<00:33, 62.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 24%|██▎ | 609M/2.50G [00:10<00:37, 55.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 24%|██▍ | 616M/2.50G [00:10<00:33, 61.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 24%|██▍ | 624M/2.50G [00:10<00:30, 66.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 25%|██▍ | 632M/2.50G [00:10<00:29, 69.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 25%|██▍ | 638M/2.50G [00:10<00:29, 68.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 25%|██▌ | 645M/2.50G [00:10<00:31, 64.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 25%|██▌ | 651M/2.50G [00:10<00:33, 59.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 26%|██▌ | 657M/2.50G [00:11<00:35, 56.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 26%|██▌ | 664M/2.50G [00:11<00:32, 60.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 26%|██▌ | 672M/2.50G [00:11<00:29, 66.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 26%|██▋ | 678M/2.50G [00:11<00:29, 67.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 27%|██▋ | 685M/2.50G [00:11<00:28, 68.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 27%|██▋ | 692M/2.50G [00:11<00:29, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 27%|██▋ | 699M/2.50G [00:11<00:28, 68.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 706M/2.50G [00:11<00:27, 69.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 713M/2.50G [00:11<00:28, 67.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 720M/2.50G [00:12<00:26, 71.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 728M/2.50G [00:12<00:29, 64.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 29%|██▊ | 735M/2.50G [00:12<00:28, 66.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 29%|██▉ | 742M/2.50G [00:12<00:28, 67.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 29%|██▉ | 748M/2.50G [00:12<00:28, 67.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 29%|██▉ | 755M/2.50G [00:12<00:27, 69.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 30%|██▉ | 762M/2.50G [00:12<00:37, 49.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 30%|██▉ | 768M/2.50G [00:12<00:34, 53.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 30%|███ | 776M/2.50G [00:12<00:31, 60.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 31%|███ | 782M/2.50G [00:13<00:31, 59.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 31%|███ | 790M/2.50G [00:13<00:28, 65.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 31%|███ | 797M/2.50G [00:13<00:28, 65.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 31%|███▏ | 803M/2.50G [00:13<00:30, 61.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 32%|███▏ | 811M/2.50G [00:13<00:28, 65.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 32%|███▏ | 818M/2.50G [00:13<00:26, 69.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 32%|███▏ | 825M/2.50G [00:13<00:27, 66.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 32%|███▏ | 832M/2.50G [00:13<00:29, 62.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 33%|███▎ | 840M/2.50G [00:13<00:26, 67.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 33%|███▎ | 846M/2.50G [00:14<00:26, 66.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 33%|███▎ | 853M/2.50G [00:14<00:26, 68.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 34%|███▎ | 860M/2.50G [00:14<00:26, 67.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 34%|███▍ | 867M/2.50G [00:14<00:25, 69.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 34%|███▍ | 875M/2.50G [00:14<00:24, 72.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 34%|███▍ | 883M/2.50G [00:14<00:22, 76.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 35%|███▍ | 891M/2.50G [00:14<00:23, 73.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 35%|███▌ | 898M/2.50G [00:14<00:24, 71.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 35%|███▌ | 905M/2.50G [00:14<00:24, 72.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 36%|███▌ | 912M/2.50G [00:15<00:23, 74.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 36%|███▌ | 920M/2.50G [00:15<00:22, 75.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 36%|███▌ | 927M/2.50G [00:15<00:22, 76.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 36%|███▋ | 935M/2.50G [00:15<00:30, 56.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 37%|███▋ | 942M/2.50G [00:15<00:27, 61.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 37%|███▋ | 949M/2.50G [00:15<00:25, 66.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 37%|███▋ | 956M/2.50G [00:15<00:30, 55.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 38%|███▊ | 964M/2.50G [00:15<00:27, 60.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 38%|███▊ | 970M/2.50G [00:16<00:29, 56.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 38%|███▊ | 977M/2.50G [00:16<00:27, 59.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 38%|███▊ | 984M/2.50G [00:16<00:33, 50.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 39%|███▊ | 991M/2.50G [00:16<00:29, 56.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 39%|███▉ | 998M/2.50G [00:16<00:27, 59.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 39%|███▉ | 0.98G/2.50G [00:16<00:25, 63.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 39%|███▉ | 0.99G/2.50G [00:16<00:26, 62.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 40%|███▉ | 0.99G/2.50G [00:16<00:26, 61.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 40%|███▉ | 1.00G/2.50G [00:17<00:29, 53.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 40%|████ | 1.01G/2.50G [00:17<00:28, 57.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 40%|████ | 1.01G/2.50G [00:17<00:28, 56.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 41%|████ | 1.02G/2.50G [00:17<00:24, 64.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 41%|████ | 1.03G/2.50G [00:17<00:24, 65.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 41%|████ | 1.03G/2.50G [00:17<00:24, 65.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 42%|████▏ | 1.04G/2.50G [00:17<00:23, 68.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 42%|████▏ | 1.05G/2.50G [00:17<00:21, 71.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 42%|████▏ | 1.05G/2.50G [00:17<00:26, 58.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 42%|████▏ | 1.06G/2.50G [00:18<00:24, 64.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 43%|████▎ | 1.07G/2.50G [00:18<00:27, 56.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 43%|████▎ | 1.07G/2.50G [00:18<00:28, 53.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 43%|████▎ | 1.08G/2.50G [00:18<00:30, 50.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 43%|████▎ | 1.09G/2.50G [00:18<00:26, 57.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 44%|████▎ | 1.09G/2.50G [00:18<00:23, 63.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 44%|████▍ | 1.10G/2.50G [00:18<00:22, 68.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 44%|████▍ | 1.11G/2.50G [00:18<00:20, 71.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 45%|████▍ | 1.12G/2.50G [00:18<00:21, 69.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 45%|████▍ | 1.12G/2.50G [00:19<00:20, 72.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 45%|████▌ | 1.13G/2.50G [00:19<00:23, 63.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 45%|████▌ | 1.14G/2.50G [00:19<00:22, 64.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 46%|████▌ | 1.14G/2.50G [00:19<00:22, 64.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 46%|████▌ | 1.15G/2.50G [00:19<00:27, 52.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 46%|████▌ | 1.15G/2.50G [00:19<00:27, 53.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 46%|████▋ | 1.16G/2.50G [00:19<00:26, 53.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 47%|████▋ | 1.17G/2.50G [00:19<00:24, 59.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 47%|████▋ | 1.17G/2.50G [00:20<00:23, 62.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 47%|████▋ | 1.18G/2.50G [00:20<00:21, 66.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 47%|████▋ | 1.19G/2.50G [00:20<00:20, 69.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 48%|████▊ | 1.19G/2.50G [00:20<00:21, 64.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 48%|████▊ | 1.20G/2.50G [00:20<00:24, 57.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 48%|████▊ | 1.21G/2.50G [00:20<00:23, 59.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 48%|████▊ | 1.21G/2.50G [00:20<00:23, 59.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 49%|████▊ | 1.22G/2.50G [00:20<00:22, 62.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 49%|████▉ | 1.23G/2.50G [00:20<00:20, 67.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 49%|████▉ | 1.23G/2.50G [00:21<00:21, 62.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 49%|████▉ | 1.24G/2.50G [00:21<00:23, 58.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 50%|████▉ | 1.25G/2.50G [00:21<00:21, 64.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 50%|█████ | 1.25G/2.50G [00:21<00:20, 65.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 50%|█████ | 1.26G/2.50G [00:21<00:20, 66.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 51%|█████ | 1.27G/2.50G [00:21<00:20, 63.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 51%|█████ | 1.27G/2.50G [00:21<00:20, 65.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 51%|█████ | 1.28G/2.50G [00:21<00:21, 60.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 51%|█████▏ | 1.28G/2.50G [00:21<00:22, 58.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 52%|█████▏ | 1.29G/2.50G [00:22<00:21, 60.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 52%|█████▏ | 1.30G/2.50G [00:22<00:19, 65.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 52%|█████▏ | 1.30G/2.50G [00:22<00:19, 67.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 52%|█████▏ | 1.31G/2.50G [00:22<00:19, 66.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 53%|█████▎ | 1.32G/2.50G [00:22<00:19, 64.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 53%|█████▎ | 1.32G/2.50G [00:22<00:18, 69.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 53%|█████▎ | 1.33G/2.50G [00:22<00:22, 54.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 53%|█████▎ | 1.34G/2.50G [00:22<00:22, 56.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 54%|█████▎ | 1.34G/2.50G [00:22<00:20, 60.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 54%|█████▍ | 1.35G/2.50G [00:23<00:19, 63.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 54%|█████▍ | 1.36G/2.50G [00:23<00:19, 64.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 54%|█████▍ | 1.36G/2.50G [00:23<00:19, 63.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 55%|█████▍ | 1.37G/2.50G [00:23<00:18, 64.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 55%|█████▍ | 1.38G/2.50G [00:23<00:18, 64.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 55%|█████▌ | 1.38G/2.50G [00:23<00:19, 62.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 55%|█████▌ | 1.39G/2.50G [00:23<00:18, 64.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 56%|█████▌ | 1.40G/2.50G [00:23<00:18, 62.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 56%|█████▌ | 1.40G/2.50G [00:23<00:21, 55.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 56%|█████▌ | 1.41G/2.50G [00:24<00:25, 46.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 56%|█████▋ | 1.41G/2.50G [00:24<00:22, 53.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 57%|█████▋ | 1.42G/2.50G [00:24<00:26, 43.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 57%|█████▋ | 1.43G/2.50G [00:24<00:22, 52.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 57%|█████▋ | 1.43G/2.50G [00:24<00:23, 49.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 57%|█████▋ | 1.44G/2.50G [00:24<00:21, 52.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 58%|█████▊ | 1.44G/2.50G [00:24<00:21, 53.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 58%|█████▊ | 1.45G/2.50G [00:24<00:20, 54.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 58%|█████▊ | 1.45G/2.50G [00:25<00:22, 50.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 58%|█████▊ | 1.46G/2.50G [00:25<00:19, 56.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 59%|█████▊ | 1.47G/2.50G [00:25<00:25, 43.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 59%|█████▊ | 1.47G/2.50G [00:25<00:27, 40.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 59%|█████▉ | 1.48G/2.50G [00:25<00:28, 38.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 59%|█████▉ | 1.48G/2.50G [00:25<00:24, 45.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 59%|█████▉ | 1.49G/2.50G [00:26<00:24, 44.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 60%|█████▉ | 1.49G/2.50G [00:26<00:23, 45.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 60%|█████▉ | 1.50G/2.50G [00:26<00:29, 36.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 60%|██████ | 1.51G/2.50G [00:26<00:24, 44.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 60%|██████ | 1.51G/2.50G [00:26<00:24, 42.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 61%|██████ | 1.52G/2.50G [00:26<00:23, 45.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 61%|██████ | 1.52G/2.50G [00:26<00:20, 50.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 61%|██████ | 1.53G/2.50G [00:26<00:18, 56.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 61%|██████▏ | 1.54G/2.50G [00:27<00:20, 51.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 62%|██████▏ | 1.54G/2.50G [00:27<00:17, 59.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 62%|██████▏ | 1.55G/2.50G [00:27<00:17, 58.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 62%|██████▏ | 1.56G/2.50G [00:27<00:17, 59.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 62%|██████▏ | 1.56G/2.50G [00:27<00:15, 64.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 1.57G/2.50G [00:27<00:14, 67.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 1.58G/2.50G [00:27<00:14, 66.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 1.58G/2.50G [00:27<00:14, 69.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 1.59G/2.50G [00:27<00:14, 65.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 64%|██████▍ | 1.60G/2.50G [00:28<00:14, 67.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 64%|██████▍ | 1.60G/2.50G [00:28<00:14, 65.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 64%|██████▍ | 1.61G/2.50G [00:28<00:14, 68.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 65%|██████▍ | 1.62G/2.50G [00:28<00:13, 71.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 65%|██████▍ | 1.62G/2.50G [00:28<00:13, 67.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 65%|██████▌ | 1.63G/2.50G [00:28<00:13, 68.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 65%|██████▌ | 1.64G/2.50G [00:28<00:14, 63.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 66%|██████▌ | 1.64G/2.50G [00:28<00:13, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 66%|██████▌ | 1.65G/2.50G [00:28<00:13, 66.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 66%|██████▌ | 1.66G/2.50G [00:28<00:13, 67.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 66%|██████▋ | 1.66G/2.50G [00:29<00:13, 67.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 67%|██████▋ | 1.67G/2.50G [00:29<00:13, 68.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 67%|██████▋ | 1.68G/2.50G [00:29<00:13, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 67%|██████▋ | 1.68G/2.50G [00:29<00:12, 67.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 67%|██████▋ | 1.69G/2.50G [00:29<00:12, 67.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 68%|██████▊ | 1.70G/2.50G [00:29<00:12, 68.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 68%|██████▊ | 1.70G/2.50G [00:29<00:12, 70.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 68%|██████▊ | 1.71G/2.50G [00:29<00:12, 67.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 69%|██████▊ | 1.72G/2.50G [00:29<00:12, 69.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 69%|██████▉ | 1.72G/2.50G [00:30<00:12, 65.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 69%|██████▉ | 1.73G/2.50G [00:30<00:12, 66.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 69%|██████▉ | 1.74G/2.50G [00:30<00:11, 69.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 70%|██████▉ | 1.74G/2.50G [00:30<00:12, 66.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 70%|██████▉ | 1.75G/2.50G [00:30<00:11, 67.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 70%|███████ | 1.76G/2.50G [00:30<00:11, 68.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 70%|███████ | 1.76G/2.50G [00:30<00:11, 66.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 71%|███████ | 1.77G/2.50G [00:30<00:11, 68.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 71%|███████ | 1.78G/2.50G [00:30<00:10, 71.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 71%|███████▏ | 1.79G/2.50G [00:31<00:11, 66.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 72%|███████▏ | 1.79G/2.50G [00:31<00:12, 62.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 72%|███████▏ | 1.80G/2.50G [00:31<00:11, 64.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 72%|███████▏ | 1.81G/2.50G [00:31<00:11, 67.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 72%|███████▏ | 1.81G/2.50G [00:31<00:11, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 73%|███████▎ | 1.82G/2.50G [00:31<00:10, 67.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 73%|███████▎ | 1.83G/2.50G [00:31<00:09, 73.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 73%|███████▎ | 1.83G/2.50G [00:31<00:13, 51.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 73%|███████▎ | 1.84G/2.50G [00:32<00:15, 46.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 74%|███████▎ | 1.85G/2.50G [00:32<00:13, 51.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 74%|███████▍ | 1.85G/2.50G [00:32<00:13, 53.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 74%|███████▍ | 1.86G/2.50G [00:32<00:13, 52.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 74%|███████▍ | 1.86G/2.50G [00:32<00:12, 56.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 75%|███████▍ | 1.87G/2.50G [00:32<00:11, 57.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 75%|███████▍ | 1.88G/2.50G [00:32<00:10, 63.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 75%|███████▌ | 1.88G/2.50G [00:32<00:10, 64.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 75%|███████▌ | 1.89G/2.50G [00:32<00:12, 52.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 76%|███████▌ | 1.89G/2.50G [00:33<00:12, 52.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 76%|███████▌ | 1.90G/2.50G [00:33<00:14, 44.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 76%|███████▌ | 1.91G/2.50G [00:33<00:16, 39.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 76%|███████▋ | 1.91G/2.50G [00:33<00:15, 41.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.92G/2.50G [00:33<00:13, 47.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.92G/2.50G [00:33<00:12, 48.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.93G/2.50G [00:33<00:11, 51.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.93G/2.50G [00:34<00:11, 51.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.94G/2.50G [00:34<00:13, 43.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.94G/2.50G [00:34<00:12, 48.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.95G/2.50G [00:34<00:12, 46.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.95G/2.50G [00:34<00:13, 44.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.96G/2.50G [00:34<00:12, 48.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.96G/2.50G [00:34<00:13, 43.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 79%|███████▊ | 1.97G/2.50G [00:34<00:13, 41.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 79%|███████▉ | 1.98G/2.50G [00:35<00:11, 50.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 79%|███████▉ | 1.98G/2.50G [00:35<00:12, 44.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 79%|███████▉ | 1.99G/2.50G [00:35<00:10, 51.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 80%|███████▉ | 1.99G/2.50G [00:35<00:09, 56.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 80%|███████▉ | 2.00G/2.50G [00:35<00:09, 58.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 80%|████████ | 2.01G/2.50G [00:35<00:09, 57.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 80%|████████ | 2.01G/2.50G [00:35<00:08, 61.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 81%|████████ | 2.02G/2.50G [00:35<00:08, 62.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 81%|████████ | 2.03G/2.50G [00:35<00:09, 55.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 81%|████████▏ | 2.03G/2.50G [00:36<00:07, 63.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 82%|████████▏ | 2.04G/2.50G [00:36<00:07, 68.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 82%|████████▏ | 2.05G/2.50G [00:36<00:07, 69.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 82%|████████▏ | 2.06G/2.50G [00:36<00:07, 65.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 82%|████████▏ | 2.06G/2.50G [00:36<00:07, 61.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 83%|████████▎ | 2.07G/2.50G [00:36<00:07, 60.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 83%|████████▎ | 2.08G/2.50G [00:36<00:07, 65.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 83%|████████▎ | 2.08G/2.50G [00:36<00:07, 63.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 83%|████████▎ | 2.09G/2.50G [00:36<00:07, 63.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 84%|████████▎ | 2.09G/2.50G [00:37<00:06, 63.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 84%|████████▍ | 2.10G/2.50G [00:37<00:06, 65.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 84%|████████▍ | 2.11G/2.50G [00:37<00:06, 68.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 84%|████████▍ | 2.11G/2.50G [00:37<00:06, 65.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 85%|████████▍ | 2.12G/2.50G [00:37<00:06, 66.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 85%|████████▍ | 2.13G/2.50G [00:37<00:09, 43.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 85%|████████▌ | 2.13G/2.50G [00:37<00:08, 45.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 85%|████████▌ | 2.14G/2.50G [00:37<00:07, 50.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 86%|████████▌ | 2.14G/2.50G [00:38<00:08, 46.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 86%|████████▌ | 2.15G/2.50G [00:38<00:09, 41.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 86%|████████▌ | 2.16G/2.50G [00:38<00:08, 43.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 86%|████████▋ | 2.16G/2.50G [00:38<00:07, 50.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 2.17G/2.50G [00:38<00:08, 43.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 2.17G/2.50G [00:39<00:19, 18.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 2.18G/2.50G [00:39<00:18, 19.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 2.18G/2.50G [00:39<00:12, 27.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 2.19G/2.50G [00:39<00:12, 26.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 2.19G/2.50G [00:40<00:10, 32.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 2.20G/2.50G [00:40<00:20, 15.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 2.20G/2.50G [00:40<00:18, 17.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 2.21G/2.50G [00:40<00:11, 26.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 2.21G/2.50G [00:41<00:12, 25.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 89%|████████▊ | 2.22G/2.50G [00:41<00:11, 26.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 89%|████████▉ | 2.23G/2.50G [00:41<00:09, 30.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 89%|████████▉ | 2.23G/2.50G [00:41<00:08, 35.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 89%|████████▉ | 2.24G/2.50G [00:41<00:09, 31.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|████████▉ | 2.24G/2.50G [00:42<00:09, 28.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|████████▉ | 2.25G/2.50G [00:42<00:08, 31.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|████████▉ | 2.25G/2.50G [00:42<00:09, 29.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|█████████ | 2.26G/2.50G [00:42<00:07, 34.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|█████████ | 2.27G/2.50G [00:42<00:05, 43.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 91%|█████████ | 2.27G/2.50G [00:42<00:07, 35.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 91%|█████████ | 2.27G/2.50G [00:43<00:08, 30.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 91%|█████████ | 2.28G/2.50G [00:43<00:07, 34.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 91%|█████████▏| 2.29G/2.50G [00:43<00:05, 42.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 92%|█████████▏| 2.29G/2.50G [00:43<00:06, 37.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 92%|█████████▏| 2.30G/2.50G [00:43<00:06, 34.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 92%|█████████▏| 2.30G/2.50G [00:43<00:06, 35.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 92%|█████████▏| 2.31G/2.50G [00:44<00:04, 44.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 93%|█████████▎| 2.32G/2.50G [00:44<00:04, 40.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 93%|█████████▎| 2.32G/2.50G [00:44<00:05, 35.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 93%|█████████▎| 2.33G/2.50G [00:44<00:04, 40.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 93%|█████████▎| 2.33G/2.50G [00:44<00:04, 44.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 94%|█████████▎| 2.34G/2.50G [00:44<00:03, 52.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 94%|█████████▎| 2.35G/2.50G [00:44<00:03, 52.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 94%|█████████▍| 2.35G/2.50G [00:45<00:03, 46.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 94%|█████████▍| 2.36G/2.50G [00:45<00:03, 51.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 94%|█████████▍| 2.36G/2.50G [00:45<00:03, 47.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▍| 2.37G/2.50G [00:45<00:03, 44.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▍| 2.37G/2.50G [00:45<00:02, 50.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▌| 2.38G/2.50G [00:45<00:03, 42.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▌| 2.38G/2.50G [00:45<00:02, 43.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▌| 2.39G/2.50G [00:45<00:02, 44.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▌| 2.39G/2.50G [00:45<00:02, 46.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▌| 2.40G/2.50G [00:46<00:02, 40.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▌| 2.40G/2.50G [00:46<00:02, 45.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▌| 2.41G/2.50G [00:46<00:02, 41.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▋| 2.41G/2.50G [00:46<00:02, 45.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 2.42G/2.50G [00:46<00:01, 51.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 2.43G/2.50G [00:46<00:01, 52.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 2.43G/2.50G [00:47<00:02, 36.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 2.44G/2.50G [00:47<00:04, 16.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 2.44G/2.50G [00:47<00:03, 17.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 2.45G/2.50G [00:47<00:02, 25.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 2.45G/2.50G [00:48<00:02, 28.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 2.45G/2.50G [00:48<00:01, 28.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 2.46G/2.50G [00:48<00:01, 32.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 2.46G/2.50G [00:48<00:01, 34.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▊| 2.47G/2.50G [00:48<00:01, 33.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▉| 2.48G/2.50G [00:48<00:00, 41.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▉| 2.48G/2.50G [00:48<00:00, 34.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▉| 2.48G/2.50G [00:49<00:00, 30.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▉| 2.49G/2.50G [00:49<00:00, 37.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"100%|█████████▉| 2.49G/2.50G [00:49<00:00, 35.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"100%|█████████▉| 2.50G/2.50G [00:49<00:00, 42.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"100%|██████████| 2.50G/2.50G [00:49<00:00, 54.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 0%| | 0.00/1.35G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 0%| | 4.01M/1.35G [00:00<00:44, 32.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%| | 8.01M/1.35G [00:00<00:40, 35.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%| | 15.4M/1.35G [00:00<00:26, 53.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 1%|▏ | 20.7M/1.35G [00:00<00:29, 48.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 25.5M/1.35G [00:00<00:31, 45.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 2%|▏ | 32.0M/1.35G [00:01<01:56, 12.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 39.3M/1.35G [00:01<01:18, 17.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 43.7M/1.35G [00:03<02:21, 9.88MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 3%|▎ | 48.0M/1.35G [00:04<03:17, 7.08MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 4%|▍ | 53.4M/1.35G [00:04<02:21, 9.82MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 4%|▍ | 56.7M/1.35G [00:05<03:55, 5.90MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 5%|▍ | 64.0M/1.35G [00:05<02:27, 9.38MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 5%|▌ | 70.4M/1.35G [00:05<01:43, 13.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▌ | 76.7M/1.35G [00:05<01:16, 17.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▌ | 82.3M/1.35G [00:06<01:00, 22.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 6%|▋ | 88.0M/1.35G [00:06<00:49, 27.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 7%|▋ | 95.2M/1.35G [00:06<00:38, 35.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 7%|▋ | 101M/1.35G [00:06<00:33, 39.9MB/s] "
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 8%|▊ | 107M/1.35G [00:06<00:30, 44.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 8%|▊ | 113M/1.35G [00:06<00:27, 47.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 9%|▊ | 120M/1.35G [00:06<00:24, 54.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 9%|▉ | 128M/1.35G [00:06<00:21, 61.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 10%|▉ | 134M/1.35G [00:06<00:22, 59.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 10%|█ | 141M/1.35G [00:07<00:21, 59.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 11%|█ | 147M/1.35G [00:07<00:21, 60.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 11%|█ | 153M/1.35G [00:07<00:22, 57.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 160M/1.35G [00:07<00:27, 46.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 166M/1.35G [00:07<00:25, 50.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 12%|█▏ | 171M/1.35G [00:07<00:28, 44.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 13%|█▎ | 176M/1.35G [00:07<00:27, 45.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 13%|█▎ | 183M/1.35G [00:07<00:23, 52.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 14%|█▎ | 189M/1.35G [00:08<00:25, 49.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 14%|█▍ | 195M/1.35G [00:08<00:23, 53.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 15%|█▍ | 203M/1.35G [00:08<00:20, 60.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 15%|█▌ | 210M/1.35G [00:08<00:19, 64.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 16%|█▌ | 216M/1.35G [00:08<00:18, 64.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 16%|█▌ | 223M/1.35G [00:08<00:17, 67.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 17%|█▋ | 231M/1.35G [00:08<00:17, 70.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 17%|█▋ | 238M/1.35G [00:08<00:16, 71.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 18%|█▊ | 245M/1.35G [00:08<00:16, 71.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 18%|█▊ | 253M/1.35G [00:09<00:15, 74.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 19%|█▉ | 260M/1.35G [00:09<00:19, 60.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 19%|█▉ | 266M/1.35G [00:09<00:21, 53.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 20%|█▉ | 272M/1.35G [00:09<00:21, 55.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 20%|██ | 279M/1.35G [00:09<00:18, 60.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 21%|██ | 285M/1.35G [00:09<00:18, 60.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 21%|██ | 291M/1.35G [00:09<00:20, 55.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 297M/1.35G [00:09<00:20, 56.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 304M/1.35G [00:10<00:19, 57.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 22%|██▏ | 310M/1.35G [00:10<00:19, 56.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 23%|██▎ | 315M/1.35G [00:10<00:20, 55.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 23%|██▎ | 322M/1.35G [00:10<00:18, 60.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 24%|██▍ | 331M/1.35G [00:10<00:15, 70.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 25%|██▍ | 339M/1.35G [00:10<00:15, 72.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 25%|██▌ | 346M/1.35G [00:10<00:14, 74.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 26%|██▌ | 354M/1.35G [00:10<00:15, 67.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 26%|██▌ | 360M/1.35G [00:10<00:16, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 27%|██▋ | 368M/1.35G [00:10<00:15, 69.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 27%|██▋ | 374M/1.35G [00:11<00:17, 59.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 381M/1.35G [00:11<00:17, 61.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 387M/1.35G [00:11<00:16, 61.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 28%|██▊ | 393M/1.35G [00:11<00:18, 57.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 29%|██▉ | 400M/1.35G [00:11<00:17, 58.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 30%|██▉ | 407M/1.35G [00:11<00:16, 62.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 30%|██▉ | 413M/1.35G [00:11<00:18, 56.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 30%|███ | 419M/1.35G [00:11<00:19, 52.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 31%|███ | 424M/1.35G [00:12<00:19, 51.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 31%|███▏ | 432M/1.35G [00:12<00:16, 58.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 32%|███▏ | 437M/1.35G [00:12<00:17, 54.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 32%|███▏ | 443M/1.35G [00:12<00:18, 52.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 33%|███▎ | 450M/1.35G [00:12<00:16, 59.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 33%|███▎ | 456M/1.35G [00:12<00:17, 56.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 34%|███▎ | 464M/1.35G [00:12<00:16, 59.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 34%|███▍ | 471M/1.35G [00:12<00:14, 64.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 35%|███▍ | 478M/1.35G [00:13<00:16, 57.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 35%|███▌ | 485M/1.35G [00:13<00:15, 62.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 36%|███▌ | 494M/1.35G [00:13<00:13, 70.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 36%|███▋ | 501M/1.35G [00:13<00:12, 72.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 37%|███▋ | 508M/1.35G [00:13<00:12, 73.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 37%|███▋ | 516M/1.35G [00:13<00:15, 58.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 38%|███▊ | 522M/1.35G [00:13<00:17, 50.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 38%|███▊ | 528M/1.35G [00:13<00:18, 49.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 39%|███▉ | 535M/1.35G [00:14<00:15, 55.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 39%|███▉ | 541M/1.35G [00:14<00:15, 56.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 40%|███▉ | 547M/1.35G [00:14<00:16, 53.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 40%|████ | 552M/1.35G [00:14<00:17, 49.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 41%|████ | 560M/1.35G [00:14<00:15, 57.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 41%|████ | 566M/1.35G [00:14<00:16, 53.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 41%|████▏ | 571M/1.35G [00:14<00:17, 49.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 42%|████▏ | 579M/1.35G [00:14<00:14, 57.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 42%|████▏ | 586M/1.35G [00:14<00:13, 62.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 43%|████▎ | 593M/1.35G [00:15<00:12, 64.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 44%|████▎ | 600M/1.35G [00:15<00:11, 68.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 44%|████▍ | 607M/1.35G [00:15<00:11, 70.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 45%|████▍ | 615M/1.35G [00:15<00:11, 71.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 45%|████▌ | 622M/1.35G [00:15<00:10, 72.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 46%|████▌ | 630M/1.35G [00:15<00:10, 76.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 46%|████▌ | 638M/1.35G [00:15<00:10, 77.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 47%|████▋ | 645M/1.35G [00:15<00:09, 79.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 47%|████▋ | 653M/1.35G [00:15<00:09, 77.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 48%|████▊ | 661M/1.35G [00:15<00:09, 79.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 48%|████▊ | 669M/1.35G [00:16<00:09, 77.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 49%|████▉ | 676M/1.35G [00:16<00:09, 75.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 50%|████▉ | 683M/1.35G [00:16<00:09, 73.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 50%|█████ | 691M/1.35G [00:16<00:09, 74.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 51%|█████ | 699M/1.35G [00:16<00:09, 77.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 51%|█████ | 707M/1.35G [00:16<00:08, 78.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 52%|█████▏ | 714M/1.35G [00:16<00:08, 79.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 52%|█████▏ | 722M/1.35G [00:16<00:08, 76.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 53%|█████▎ | 729M/1.35G [00:16<00:09, 74.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 53%|█████▎ | 737M/1.35G [00:17<00:08, 77.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 54%|█████▍ | 745M/1.35G [00:17<00:08, 76.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 55%|█████▍ | 752M/1.35G [00:17<00:08, 77.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 55%|█████▌ | 762M/1.35G [00:17<00:07, 82.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 56%|█████▌ | 769M/1.35G [00:17<00:09, 68.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 56%|█████▋ | 776M/1.35G [00:17<00:09, 67.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 57%|█████▋ | 784M/1.35G [00:17<00:09, 67.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 57%|█████▋ | 791M/1.35G [00:17<00:08, 69.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 58%|█████▊ | 798M/1.35G [00:17<00:08, 71.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 58%|█████▊ | 805M/1.35G [00:18<00:08, 70.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 59%|█████▉ | 814M/1.35G [00:18<00:07, 76.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 60%|█████▉ | 822M/1.35G [00:18<00:08, 65.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 60%|██████ | 829M/1.35G [00:18<00:08, 69.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 61%|██████ | 836M/1.35G [00:18<00:08, 66.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 61%|██████ | 843M/1.35G [00:18<00:09, 58.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 62%|██████▏ | 848M/1.35G [00:18<00:09, 57.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 62%|██████▏ | 856M/1.35G [00:18<00:09, 58.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 863M/1.35G [00:19<00:08, 63.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 869M/1.35G [00:19<00:08, 59.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 63%|██████▎ | 875M/1.35G [00:19<00:09, 58.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 64%|██████▍ | 881M/1.35G [00:19<00:10, 50.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 64%|██████▍ | 888M/1.35G [00:19<00:09, 55.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 65%|██████▍ | 895M/1.35G [00:19<00:08, 60.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 66%|██████▌ | 903M/1.35G [00:19<00:07, 67.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 66%|██████▌ | 910M/1.35G [00:19<00:07, 63.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 67%|██████▋ | 918M/1.35G [00:19<00:06, 69.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 67%|██████▋ | 925M/1.35G [00:20<00:06, 69.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 68%|██████▊ | 932M/1.35G [00:20<00:07, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 68%|██████▊ | 938M/1.35G [00:20<00:07, 65.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 68%|██████▊ | 945M/1.35G [00:20<00:07, 62.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 69%|██████▉ | 952M/1.35G [00:20<00:07, 63.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 69%|██████▉ | 958M/1.35G [00:20<00:06, 63.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 70%|██████▉ | 965M/1.35G [00:20<00:06, 65.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 70%|███████ | 971M/1.35G [00:20<00:07, 60.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 71%|███████ | 978M/1.35G [00:20<00:06, 64.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 71%|███████▏ | 985M/1.35G [00:21<00:06, 65.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 72%|███████▏ | 994M/1.35G [00:21<00:05, 72.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 73%|███████▎ | 0.98G/1.35G [00:21<00:05, 72.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 73%|███████▎ | 0.98G/1.35G [00:21<00:05, 74.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 74%|███████▎ | 0.99G/1.35G [00:21<00:05, 71.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 74%|███████▍ | 1.00G/1.35G [00:21<00:05, 72.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 75%|███████▍ | 1.01G/1.35G [00:21<00:06, 60.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 75%|███████▌ | 1.01G/1.35G [00:21<00:06, 59.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 76%|███████▌ | 1.02G/1.35G [00:21<00:06, 57.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 76%|███████▌ | 1.02G/1.35G [00:22<00:06, 55.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.03G/1.35G [00:22<00:05, 60.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 77%|███████▋ | 1.04G/1.35G [00:22<00:05, 64.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.04G/1.35G [00:22<00:04, 67.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 78%|███████▊ | 1.05G/1.35G [00:22<00:04, 70.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 79%|███████▊ | 1.06G/1.35G [00:22<00:04, 71.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 79%|███████▉ | 1.07G/1.35G [00:22<00:03, 76.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 80%|███████▉ | 1.07G/1.35G [00:22<00:03, 75.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 80%|████████ | 1.08G/1.35G [00:22<00:04, 69.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 81%|████████ | 1.09G/1.35G [00:23<00:03, 74.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 81%|████████▏ | 1.10G/1.35G [00:23<00:03, 71.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 82%|████████▏ | 1.10G/1.35G [00:23<00:03, 68.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 82%|████████▏ | 1.11G/1.35G [00:23<00:03, 66.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 83%|████████▎ | 1.12G/1.35G [00:23<00:03, 62.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 83%|████████▎ | 1.12G/1.35G [00:23<00:03, 65.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 84%|████████▍ | 1.13G/1.35G [00:23<00:03, 68.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 84%|████████▍ | 1.14G/1.35G [00:23<00:03, 64.2MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 85%|████████▍ | 1.14G/1.35G [00:23<00:03, 62.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 85%|████████▌ | 1.15G/1.35G [00:24<00:03, 67.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 86%|████████▌ | 1.16G/1.35G [00:24<00:02, 70.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 1.17G/1.35G [00:24<00:02, 74.5MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 87%|████████▋ | 1.17G/1.35G [00:24<00:02, 75.7MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 1.18G/1.35G [00:24<00:02, 74.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 88%|████████▊ | 1.19G/1.35G [00:24<00:02, 74.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 89%|████████▉ | 1.20G/1.35G [00:24<00:02, 75.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 89%|████████▉ | 1.20G/1.35G [00:24<00:02, 75.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|████████▉ | 1.21G/1.35G [00:24<00:01, 75.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 90%|█████████ | 1.22G/1.35G [00:25<00:01, 77.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 91%|█████████ | 1.22G/1.35G [00:25<00:01, 75.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 91%|█████████▏| 1.23G/1.35G [00:25<00:01, 76.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 92%|█████████▏| 1.24G/1.35G [00:25<00:01, 73.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 92%|█████████▏| 1.25G/1.35G [00:25<00:01, 72.4MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 93%|█████████▎| 1.25G/1.35G [00:25<00:01, 66.0MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 93%|█████████▎| 1.26G/1.35G [00:25<00:02, 42.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 94%|█████████▍| 1.27G/1.35G [00:25<00:01, 53.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▍| 1.27G/1.35G [00:26<00:01, 52.3MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 95%|█████████▌| 1.28G/1.35G [00:26<00:01, 54.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▌| 1.29G/1.35G [00:26<00:01, 58.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▌| 1.29G/1.35G [00:26<00:00, 57.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 96%|█████████▋| 1.30G/1.35G [00:26<00:00, 51.8MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 1.30G/1.35G [00:26<00:00, 50.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 97%|█████████▋| 1.31G/1.35G [00:26<00:00, 56.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 1.32G/1.35G [00:26<00:00, 54.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 98%|█████████▊| 1.32G/1.35G [00:27<00:00, 59.6MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▉| 1.33G/1.35G [00:27<00:00, 63.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
" 99%|█████████▉| 1.34G/1.35G [00:27<00:00, 67.1MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"100%|██████████| 1.35G/1.35G [00:27<00:00, 52.9MB/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# initialize the models\n",
|
||
"summary_model, summary_vis_processors = ammico.SummaryDetector(image_dict).load_model(model_type=\"base\")\n",
|
||
"# run the analysis without having to re-iniatialize the model\n",
|
||
"for key in image_dict.keys():\n",
|
||
" image_dict[key] = ammico.SummaryDetector(image_dict[key], analysis_type=\"summary\", \n",
|
||
" summary_model=summary_model, \n",
|
||
" summary_vis_processors=summary_vis_processors).analyse_image()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This can be done in a separate loop or in the same loop as for text and emotion detection.\n",
|
||
"\n",
|
||
"The nested dictionary will be updated from containing only the file id's and paths to the image files, to containing also all the image data."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 4: Convert analysis output to pandas dataframe and write csv\n",
|
||
"The content of the nested dictionary can then conveniently be converted into a pandas dataframe for further analysis in Python, or be written as a csv file:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:19:40.114322Z",
|
||
"iopub.status.busy": "2023-12-13T22:19:40.113853Z",
|
||
"iopub.status.idle": "2023-12-13T22:19:40.122994Z",
|
||
"shell.execute_reply": "2023-12-13T22:19:40.122456Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"image_df = ammico.get_dataframe(image_dict)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Inspect the dataframe:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:19:40.125685Z",
|
||
"iopub.status.busy": "2023-12-13T22:19:40.125290Z",
|
||
"iopub.status.idle": "2023-12-13T22:19:40.158945Z",
|
||
"shell.execute_reply": "2023-12-13T22:19:40.158214Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>filename</th>\n",
|
||
" <th>text</th>\n",
|
||
" <th>text_language</th>\n",
|
||
" <th>text_english</th>\n",
|
||
" <th>text_clean</th>\n",
|
||
" <th>text_summary</th>\n",
|
||
" <th>sentiment</th>\n",
|
||
" <th>sentiment_score</th>\n",
|
||
" <th>entity</th>\n",
|
||
" <th>entity_type</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>multiple_faces</th>\n",
|
||
" <th>no_faces</th>\n",
|
||
" <th>wears_mask</th>\n",
|
||
" <th>age</th>\n",
|
||
" <th>gender</th>\n",
|
||
" <th>race</th>\n",
|
||
" <th>emotion</th>\n",
|
||
" <th>emotion (category)</th>\n",
|
||
" <th>const_image_summary</th>\n",
|
||
" <th>3_non-deterministic_summary</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>data/102730_eng.png</td>\n",
|
||
" <td>400 DEATHS GET E-BOOK X AN Corporation ncy Ser...</td>\n",
|
||
" <td>en</td>\n",
|
||
" <td>400 DEATHS GET E-BOOK X AN Corporation ncy Ser...</td>\n",
|
||
" <td>DEATHS GET E - BOOK X AN Corporation Services ...</td>\n",
|
||
" <td>A municipal worker sprays disinfectant on his...</td>\n",
|
||
" <td>NEGATIVE</td>\n",
|
||
" <td>0.99</td>\n",
|
||
" <td>[AN Corporation ncy Services, Ahmedabad, RE, #...</td>\n",
|
||
" <td>[ORG, LOC, PER, ORG]</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>No</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>[No]</td>\n",
|
||
" <td>[27]</td>\n",
|
||
" <td>[Man]</td>\n",
|
||
" <td>[asian]</td>\n",
|
||
" <td>[sad]</td>\n",
|
||
" <td>[Negative]</td>\n",
|
||
" <td>two people in blue coats spray disinfection a van</td>\n",
|
||
" <td>[two men in blue scrubbing suits and yellow gl...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>data/102141_2_eng.png</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>en</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>Coronavirus QUARANTINE CORONAVIRUS OUTBREAK</td>\n",
|
||
" <td>NEGATIVE</td>\n",
|
||
" <td>0.97</td>\n",
|
||
" <td>[CORONAVIRUS, ##ARANTI, CORONAVIR, Co, ##ronavi]</td>\n",
|
||
" <td>[ORG, MISC, ORG, PER, ORG]</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>No</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>[Yes]</td>\n",
|
||
" <td>[25]</td>\n",
|
||
" <td>[Man]</td>\n",
|
||
" <td>[None]</td>\n",
|
||
" <td>[None]</td>\n",
|
||
" <td>[None]</td>\n",
|
||
" <td>a collage of images including a corona sign, a...</td>\n",
|
||
" <td>[some signs and pictures are shown with blood,...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>data/106349S_por.png</td>\n",
|
||
" <td>NEWS URGENTE SAMSUNG AO VIVO Rio de Janeiro NO...</td>\n",
|
||
" <td>pt</td>\n",
|
||
" <td>NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO...</td>\n",
|
||
" <td>NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO...</td>\n",
|
||
" <td>NEW COUNTING METHOD RJ City HALL EXCLUDES 1,1...</td>\n",
|
||
" <td>NEGATIVE</td>\n",
|
||
" <td>0.99</td>\n",
|
||
" <td>[Rio de Janeiro, C, ##IT, ##Y, PLANALTO]</td>\n",
|
||
" <td>[LOC, ORG, LOC, ORG, LOC]</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>No</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>[Yes]</td>\n",
|
||
" <td>[24]</td>\n",
|
||
" <td>[Man]</td>\n",
|
||
" <td>[None]</td>\n",
|
||
" <td>[None]</td>\n",
|
||
" <td>[None]</td>\n",
|
||
" <td>a man wearing a face mask while looking at a c...</td>\n",
|
||
" <td>[television screen with a man wearing a mask o...</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>3 rows × 21 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" filename text \\\n",
|
||
"0 data/102730_eng.png 400 DEATHS GET E-BOOK X AN Corporation ncy Ser... \n",
|
||
"1 data/102141_2_eng.png CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... \n",
|
||
"2 data/106349S_por.png NEWS URGENTE SAMSUNG AO VIVO Rio de Janeiro NO... \n",
|
||
"\n",
|
||
" text_language text_english \\\n",
|
||
"0 en 400 DEATHS GET E-BOOK X AN Corporation ncy Ser... \n",
|
||
"1 en CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... \n",
|
||
"2 pt NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO... \n",
|
||
"\n",
|
||
" text_clean \\\n",
|
||
"0 DEATHS GET E - BOOK X AN Corporation Services ... \n",
|
||
"1 CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... \n",
|
||
"2 NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO... \n",
|
||
"\n",
|
||
" text_summary sentiment \\\n",
|
||
"0 A municipal worker sprays disinfectant on his... NEGATIVE \n",
|
||
"1 Coronavirus QUARANTINE CORONAVIRUS OUTBREAK NEGATIVE \n",
|
||
"2 NEW COUNTING METHOD RJ City HALL EXCLUDES 1,1... NEGATIVE \n",
|
||
"\n",
|
||
" sentiment_score entity \\\n",
|
||
"0 0.99 [AN Corporation ncy Services, Ahmedabad, RE, #... \n",
|
||
"1 0.97 [CORONAVIRUS, ##ARANTI, CORONAVIR, Co, ##ronavi] \n",
|
||
"2 0.99 [Rio de Janeiro, C, ##IT, ##Y, PLANALTO] \n",
|
||
"\n",
|
||
" entity_type ... multiple_faces no_faces wears_mask age \\\n",
|
||
"0 [ORG, LOC, PER, ORG] ... No 1 [No] [27] \n",
|
||
"1 [ORG, MISC, ORG, PER, ORG] ... No 1 [Yes] [25] \n",
|
||
"2 [LOC, ORG, LOC, ORG, LOC] ... No 1 [Yes] [24] \n",
|
||
"\n",
|
||
" gender race emotion emotion (category) \\\n",
|
||
"0 [Man] [asian] [sad] [Negative] \n",
|
||
"1 [Man] [None] [None] [None] \n",
|
||
"2 [Man] [None] [None] [None] \n",
|
||
"\n",
|
||
" const_image_summary \\\n",
|
||
"0 two people in blue coats spray disinfection a van \n",
|
||
"1 a collage of images including a corona sign, a... \n",
|
||
"2 a man wearing a face mask while looking at a c... \n",
|
||
"\n",
|
||
" 3_non-deterministic_summary \n",
|
||
"0 [two men in blue scrubbing suits and yellow gl... \n",
|
||
"1 [some signs and pictures are shown with blood,... \n",
|
||
"2 [television screen with a man wearing a mask o... \n",
|
||
"\n",
|
||
"[3 rows x 21 columns]"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"image_df.head(3)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Or write to a csv file:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:19:40.161720Z",
|
||
"iopub.status.busy": "2023-12-13T22:19:40.161312Z",
|
||
"iopub.status.idle": "2023-12-13T22:19:40.167458Z",
|
||
"shell.execute_reply": "2023-12-13T22:19:40.166950Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"image_df.to_csv(\"data_out.csv\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# The detector modules\n",
|
||
"The different detector modules with their options are explained in more detail in this section.\n",
|
||
"## Text detector\n",
|
||
"Text on the images can be extracted using the `TextDetector` class (`text` module). The text is initally extracted using the Google Cloud Vision API and then translated into English with googletrans. The translated text is cleaned of whitespace, linebreaks, and numbers using Python syntax and spaCy. \n",
|
||
"\n",
|
||
"<img src=\"../_static/text_detector.png\" width=\"800\" />\n",
|
||
"\n",
|
||
"The user can set if the text should be further summarized, and analyzed for sentiment and named entity recognition, by setting the keyword `analyse_text` to `True` (the default is `False`). If set, the transformers pipeline is used for each of these tasks, with the default models as of 03/2023. Other models can be selected by setting the optional keyword `model_names` to a list of selected models, on for each task: `model_names=[\"sshleifer/distilbart-cnn-12-6\", \"distilbert-base-uncased-finetuned-sst-2-english\", \"dbmdz/bert-large-cased-finetuned-conll03-english\"]` for summary, sentiment, and ner. To be even more specific, revision numbers can also be selected by specifying the optional keyword `revision_numbers` to a list of revision numbers for each model, for example `revision_numbers=[\"a4f8f3e\", \"af0f99b\", \"f2482bf\"]`. \n",
|
||
"\n",
|
||
"Please note that for the Google Cloud Vision API (the TextDetector class) you need to set a key in order to process the images. This key is ideally set as an environment variable using for example:\n",
|
||
"\n",
|
||
"`os.environ[\"GOOGLE_APPLICATION_CREDENTIALS\"] = \"misinformation-campaign-981aa55a3b13.json\"`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"where you place the key on your Google Drive if running on colab, or place it in a local folder on your machine.\n",
|
||
"\n",
|
||
"Summarizing, the text detection is carried out using the following method call and keywords, where `analyse_text`, `model_names`, and `revision_numbers` are optional:\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:19:40.169969Z",
|
||
"iopub.status.busy": "2023-12-13T22:19:40.169578Z",
|
||
"iopub.status.idle": "2023-12-13T22:20:09.071428Z",
|
||
"shell.execute_reply": "2023-12-13T22:20:09.070702Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"for key in image_dict.keys():\n",
|
||
" image_dict[key] = ammico.TextDetector(image_dict[key], \n",
|
||
" analyse_text=True, model_names=[\"sshleifer/distilbart-cnn-12-6\", \n",
|
||
" \"distilbert-base-uncased-finetuned-sst-2-english\", \n",
|
||
" \"dbmdz/bert-large-cased-finetuned-conll03-english\"], \n",
|
||
" revision_numbers=[\"a4f8f3e\", \"af0f99b\", \"f2482bf\"]).analyse_image()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The models can be adapted interactively in the notebook interface and the best models can then be used in a subsequent analysis of the whole data set.\n",
|
||
"\n",
|
||
"A detailed description of the output keys and data types is given in the following table.\n",
|
||
"\n",
|
||
"| output key | output type | output value |\n",
|
||
"| ---------- | ----------- | ------------ |\n",
|
||
"| `text` | `str` | the extracted text in the original language |\n",
|
||
"| `text_language` | `str` | the detected dominant language of the extracted text |\n",
|
||
"| `text_english` | `str` | the text translated into English |\n",
|
||
"| `text_clean` | `str` | the text after cleaning from numbers and unrecognizable words |\n",
|
||
"| `text_summary` | `str` | the summary of the text, generated with a transformers model |\n",
|
||
"| `sentiment` | `str` | the detected sentiment, generated with a transformers model |\n",
|
||
"| `sentiment_score` | `float` | the confidence associated with the predicted sentiment |\n",
|
||
"| `entity` | `list[str]` | the detected named entities, generated with a transformers model |\n",
|
||
"| `entity_type` | `list[str]` | the detected entity type |\n",
|
||
"\n",
|
||
"## Image summary and query\n",
|
||
"\n",
|
||
"The `SummaryDetector` can be used to generate image captions (`summary`) as well as visual question answering (`VQA`). \n",
|
||
"\n",
|
||
"<img src=\"../_static/summary_detector.png\" width=\"800\" />\n",
|
||
"\n",
|
||
"This module is based on the [LAVIS](https://github.com/salesforce/LAVIS) library. Since the models can be quite large, an initial object is created which will load the necessary models into RAM/VRAM and then use them in the analysis. The user can specify the type of analysis to be performed using the `analysis_type` keyword. Setting it to `summary` will generate a caption (summary), `questions` will prepare answers (VQA) to a list of questions as set by the user, `summary_and_questions` will do both. Note that the desired analysis type needs to be set here in the initialization of the \n",
|
||
"detector object, and not when running the analysis for each image; the same holds true for the selected model."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:20:09.074626Z",
|
||
"iopub.status.busy": "2023-12-13T22:20:09.074416Z",
|
||
"iopub.status.idle": "2023-12-13T22:20:13.127666Z",
|
||
"shell.execute_reply": "2023-12-13T22:20:13.126983Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"image_summary_detector = ammico.SummaryDetector(image_dict, analysis_type=\"summary\", model_type=\"base\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The implemented models are listed below.\n",
|
||
"\n",
|
||
"| input model name | model |\n",
|
||
"| ---------------- | ----- |\n",
|
||
"| base | BLIP image captioning base, ViT-B/16, pretrained on COCO dataset |\n",
|
||
"| large | BLIP image captioning large, ViT-L/16, pretrained on COCO dataset |\n",
|
||
"| vqa | BLIP base model fine-tuned on VQA v2.0 dataset |\n",
|
||
"| blip2_t5_pretrain_flant5xxl | BLIP2 pretrained on FlanT5<sub>XXL</sub> | \n",
|
||
"| blip2_t5_pretrain_flant5xl | BLIP2 pretrained on FlanT5<sub>XL</sub> | \n",
|
||
"| blip2_t5_caption_coco_flant5xl | BLIP2 pretrained on FlanT5<sub>XL</sub>, fine-tuned on COCO | \n",
|
||
"| blip2_opt_pretrain_opt2.7b | BLIP2 pretrained on OPT-2.7b |\n",
|
||
"| blip2_opt_pretrain_opt6.7b | BLIP2 pretrained on OPT-6.7b | \n",
|
||
"| blip2_opt_caption_coco_opt2.7b | BLIP2 pretrained on OPT-2.7b, fine-tuned on COCO | \n",
|
||
"| blip2_opt_caption_coco_opt6.7b | BLIP2 pretrained on OPT-6.7b, fine-tuned on COCO |\n",
|
||
"\n",
|
||
"For VQA, a list of questions needs to be passed when carrying out the analysis; these should be given as a list of strings."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:20:13.130805Z",
|
||
"iopub.status.busy": "2023-12-13T22:20:13.130404Z",
|
||
"iopub.status.idle": "2023-12-13T22:20:13.133539Z",
|
||
"shell.execute_reply": "2023-12-13T22:20:13.132921Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"list_of_questions = [\n",
|
||
" \"How many persons on the picture?\",\n",
|
||
" \"Are there any politicians in the picture?\",\n",
|
||
" \"Does the picture show something from medicine?\",\n",
|
||
"]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Summarizing, the detector is run as"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:20:13.136000Z",
|
||
"iopub.status.busy": "2023-12-13T22:20:13.135620Z",
|
||
"iopub.status.idle": "2023-12-13T22:21:26.502671Z",
|
||
"shell.execute_reply": "2023-12-13T22:21:26.502006Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"image_summary_vqa_detector = ammico.SummaryDetector(image_dict, analysis_type=\"summary_and_questions\", \n",
|
||
" model_type=\"base\")\n",
|
||
"for key in image_dict.keys():\n",
|
||
" image_dict[key] = image_summary_vqa_detector.analyse_image(image_dict[key], \n",
|
||
" list_of_questions = list_of_questions)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The output is given as a dictionary with the following keys and data types:\n",
|
||
"\n",
|
||
"| output key | output type | output value |\n",
|
||
"| ---------- | ----------- | ------------ |\n",
|
||
"| `const_image_summary` | `str` | when `analysis_type=\"summary\"` or `\"summary_and_questions\"`, constant image caption (does not change upon re-running the analysis for the same model) |\n",
|
||
"| `3_non-deterministic_summary` | `list[str]` | when `analysis_type=\"summary\"` or s`ummary_and_questions`, three different captions generated with different random seeds |\n",
|
||
"| *a user-defined input question* | `str` | when `analysis_type=\"questions\"` or `summary_and_questions`, the answer to the user-defined input question | \n",
|
||
"\n",
|
||
"## Detection of faces and facial expression analysis\n",
|
||
"Faces and facial expressions are detected and analyzed using the `EmotionDetector` class from the `faces` module. Initially, it is detected if faces are present on the image using RetinaFace, followed by analysis if face masks are worn (Face-Mask-Detection). The detection of age, gender, race, and emotions is carried out with deepface.\n",
|
||
"\n",
|
||
"<img src=\"../_static/emotion_detector.png\" width=\"800\" />\n",
|
||
"\n",
|
||
"Depending on the features found on the image, the face detection module returns a different analysis content: If no faces are found on the image, all further steps are skipped and the result `\"face\": \"No\", \"multiple_faces\": \"No\", \"no_faces\": 0, \"wears_mask\": [\"No\"], \"age\": [None], \"gender\": [None], \"race\": [None], \"emotion\": [None], \"emotion (category)\": [None]` is returned. If one or several faces are found, up to three faces are analyzed if they are partially concealed by a face mask. If yes, only age and gender are detected; if no, also race, emotion, and dominant emotion are detected. In case of the latter, the output could look like this: `\"face\": \"Yes\", \"multiple_faces\": \"Yes\", \"no_faces\": 2, \"wears_mask\": [\"No\", \"No\"], \"age\": [27, 28], \"gender\": [\"Man\", \"Man\"], \"race\": [\"asian\", None], \"emotion\": [\"angry\", \"neutral\"], \"emotion (category)\": [\"Negative\", \"Neutral\"]`, where for the two faces that are detected (given by `no_faces`), some of the values are returned as a list with the first item for the first (largest) face and the second item for the second (smaller) face (for example, `\"emotion\"` returns a list `[\"angry\", \"neutral\"]` signifying the first face expressing anger, and the second face having a neutral expression).\n",
|
||
"\n",
|
||
"The emotion detection reports the seven facial expressions angry, fear, neutral, sad, disgust, happy and surprise. These emotions are assigned based on the returned confidence of the model (between 0 and 1), with a high confidence signifying a high likelihood of the detected emotion being correct. Emotion recognition is not an easy task, even for a human; therefore, we have added a keyword `emotion_threshold` signifying the % value above which an emotion is counted as being detected. The default is set to 50%, so that a confidence above 0.5 results in an emotion being assigned. If the confidence is lower, no emotion is assigned. \n",
|
||
"\n",
|
||
"From the seven facial expressions, an overall dominating emotion category is identified: negative, positive, or neutral emotion. These are defined with the facial expressions angry, disgust, fear and sad for the negative category, happy for the positive category, and surprise and neutral for the neutral category.\n",
|
||
"\n",
|
||
"A similar threshold as for the emotion recognition is set for the race detection, `race_threshold`, with the default set to 50% so that a confidence for the race above 0.5 only will return a value in the analysis. \n",
|
||
"\n",
|
||
"Summarizing, the face detection is carried out using the following method call and keywords, where `emotion_threshold` and \n",
|
||
"`race_threshold` are optional:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-12-13T22:21:26.505935Z",
|
||
"iopub.status.busy": "2023-12-13T22:21:26.505544Z",
|
||
"iopub.status.idle": "2023-12-13T22:21:47.637076Z",
|
||
"shell.execute_reply": "2023-12-13T22:21:47.636439Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 1s 543ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 243ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 230ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 233ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 15ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 1s 510ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 223ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 215ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 1s 523ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 277ms/step\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"1/1 [==============================] - ETA: 0s"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
|
||
"1/1 [==============================] - 0s 214ms/step\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for key in image_dict.keys():\n",
|
||
" image_dict[key] = ammico.EmotionDetector(image_dict[key], emotion_threshold=50, race_threshold=50).analyse_image()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The thresholds can be adapted interactively in the notebook interface and the optimal value can then be used in a subsequent analysis of the whole data set.\n",
|
||
"\n",
|
||
"The output keys that are generated are\n",
|
||
"\n",
|
||
"| output key | output type | output value |\n",
|
||
"| ---------- | ----------- | ------------ |\n",
|
||
"| `face` | `str` | if a face is detected |\n",
|
||
"| `multiple_faces` | `str` | if multiple faces are detected |\n",
|
||
"| `no_faces` | `int` | the number of detected faces |\n",
|
||
"| `wears_mask` | `list[str]` | if each of the detected faces wears a face covering, up to three faces |\n",
|
||
"| `age` | `list[int]` | the detected age, up to three faces |\n",
|
||
"| `gender` | `list[str]` | the detected gender, up to three faces |\n",
|
||
"| `race` | `list[str]` | the detected race, up to three faces, if above the confidence threshold |\n",
|
||
"| `emotion` | `list[str]` | the detected emotion, up to three faces, if above the confidence threshold |\n",
|
||
"| `emotion (category)` | `list[str]` | the detected emotion category (positive, negative, or neutral), up to three faces, if above the confidence threshold |"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Further detector modules\n",
|
||
"Further detector modules exist, such as `ColorDetector` and `MultimodalSearch`, also it is possible to carry out a topic analysis on the text data, as well as crop social media posts automatically. These are more experimental features and have their own demonstration notebooks."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "ammico",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.18"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|