AMMICO/notebooks/obj_dect_cvlib/objdect-cvlib.ipynb
xiaohemaikoo fdcb228294
M objdect (#23)
* colors expression by KMean algorithm

* object detection by imageai

* object detection by cvlib

* add encapsulation of object detection

* remove encapsulation of objdetect v0

* objects expression to dict

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* added imageai to requirements

* add objects to dictionary

* update for AnalysisMethod baseline

* add objects dection support explore_analysis display

* extend python version of misinf to allow imageai

* account for older python

* use global functionality for dict to csv convert

* update for docker build

* docker will build now but ipywidgets still not working

* test code

* include test data folder in repo

* add some sample images

* load cvs labels to dict

* add test data

* retrigger checks

* add map to human coding

* get orders from dict, missing dep

* add module to test accuracy

* retrigger checks

* retrigger checks

* now removing imageai

* removed imageai

* move labelmanager to analyse

* multiple faces in mydict

* fix pre-commit issues

* map mydict

* hide imageai

* objects default using cvlib, isolate and disable imageai

* correct python version

* refactor faces tests

* refactor objects tests

* sonarcloud issues

* refactor utils tests

* address code smells

* update readme

* update notebook without imageai

Co-authored-by: Ma Xianghe <825074348@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: iulusoy <inga.ulusoy@uni-heidelberg.de>
2022-10-04 11:34:44 +02:00

104 строки
2.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<span style =\" color : green ;font - weight : bold \">ImageAI for Object Detection</span>\n",
"http://imageai.org/#features"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A simple, high level, easy-to-use open source Computer Vision library for Python.\n",
"\n",
"It was developed with a focus on enabling easy and fast experimentation. Being able to go from an idea to prototype with least amount of delay is key to doing good research.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p>cvlib detect_common_objects pretrained on coco dataset.</p>\n",
"Underneath it uses YOLOv3 model trained on COCO dataset capable of detecting 80 common objects in context."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import cvlib as cv\n",
"from cvlib.object_detection import draw_bbox"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"im = cv2.imread(\"image.jpg\")\n",
"\n",
"bbox, label, conf = cv.detect_common_objects(im)\n",
"\n",
"output_image = draw_bbox(im, bbox, label, conf)\n",
"\n",
"plt.imshow(output_image)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"im = cv2.imread(\"image02.jpg\")\n",
"\n",
"bbox, label, conf = cv.detect_common_objects(im)\n",
"\n",
"output_image = draw_bbox(im, bbox, label, conf)\n",
"\n",
"plt.imshow(output_image)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}