AMMICO/build/doctrees/nbsphinx/notebooks/Example summary.ipynb

4551 строка
101 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image summary and visual question answering"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:15:14.751904Z",
"iopub.status.busy": "2023-06-01T12:15:14.751403Z",
"iopub.status.idle": "2023-06-01T12:15:14.762662Z",
"shell.execute_reply": "2023-06-01T12:15:14.761752Z"
}
},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:15:14.766885Z",
"iopub.status.busy": "2023-06-01T12:15:14.766277Z",
"iopub.status.idle": "2023-06-01T12:15:28.324732Z",
"shell.execute_reply": "2023-06-01T12:15:28.323753Z"
},
"tags": []
},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.summary as sm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:15:28.330378Z",
"iopub.status.busy": "2023-06-01T12:15:28.329393Z",
"iopub.status.idle": "2023-06-01T12:15:28.334447Z",
"shell.execute_reply": "2023-06-01T12:15:28.333605Z"
},
"tags": []
},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"images = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:15:28.338204Z",
"iopub.status.busy": "2023-06-01T12:15:28.337734Z",
"iopub.status.idle": "2023-06-01T12:15:28.341881Z",
"shell.execute_reply": "2023-06-01T12:15:28.341014Z"
},
"tags": []
},
"outputs": [],
"source": [
"mydict = mutils.initialize_dict(images)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create captions for images and directly write to csv"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n",
"\n",
"The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:15:28.346292Z",
"iopub.status.busy": "2023-06-01T12:15:28.345808Z",
"iopub.status.idle": "2023-06-01T12:16:15.115040Z",
"shell.execute_reply": "2023-06-01T12:16:15.114071Z"
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/2.50G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 3.67M/2.50G [00:00<01:10, 38.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 8.21M/2.50G [00:00<01:01, 43.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 15.6M/2.50G [00:00<00:45, 58.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 21.2M/2.50G [00:00<00:47, 55.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 27.5M/2.50G [00:00<00:44, 59.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%|▏ | 35.7M/2.50G [00:00<00:39, 67.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 42.2M/2.50G [00:00<00:39, 66.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 50.0M/2.50G [00:00<00:36, 71.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 57.4M/2.50G [00:00<00:35, 73.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 64.5M/2.50G [00:01<00:35, 73.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 72.9M/2.50G [00:01<00:33, 78.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 80.4M/2.50G [00:01<00:34, 75.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 88.4M/2.50G [00:01<00:33, 78.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▎ | 96.1M/2.50G [00:01<00:32, 78.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 104M/2.50G [00:01<00:32, 79.9MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 112M/2.50G [00:01<00:34, 75.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 119M/2.50G [00:01<00:33, 77.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 127M/2.50G [00:01<00:32, 78.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▌ | 135M/2.50G [00:01<00:31, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 144M/2.50G [00:02<00:30, 82.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 152M/2.50G [00:02<00:31, 80.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 159M/2.50G [00:02<00:32, 78.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 167M/2.50G [00:02<00:31, 79.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 175M/2.50G [00:02<00:31, 80.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 183M/2.50G [00:02<00:30, 81.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 191M/2.50G [00:02<00:30, 80.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 199M/2.50G [00:02<00:30, 80.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 207M/2.50G [00:02<00:30, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 215M/2.50G [00:02<00:30, 81.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▊ | 223M/2.50G [00:03<00:29, 82.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 232M/2.50G [00:03<00:28, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 240M/2.50G [00:03<00:29, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|▉ | 248M/2.50G [00:03<00:28, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|█ | 256M/2.50G [00:03<00:30, 79.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|█ | 264M/2.50G [00:03<00:32, 75.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█ | 273M/2.50G [00:03<00:29, 80.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█ | 281M/2.50G [00:03<00:29, 82.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█▏ | 290M/2.50G [00:03<00:28, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 298M/2.50G [00:04<00:29, 81.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 306M/2.50G [00:04<00:30, 78.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 313M/2.50G [00:04<00:30, 78.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 321M/2.50G [00:04<00:29, 79.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 329M/2.50G [00:04<00:29, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 338M/2.50G [00:04<00:27, 83.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 346M/2.50G [00:04<00:28, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 354M/2.50G [00:04<00:28, 81.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 361M/2.50G [00:04<00:28, 80.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 369M/2.50G [00:04<00:28, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▍ | 377M/2.50G [00:05<00:29, 78.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▍ | 384M/2.50G [00:05<00:29, 77.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 394M/2.50G [00:05<00:27, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▌ | 402M/2.50G [00:05<00:27, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▌ | 410M/2.50G [00:05<00:26, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▋ | 418M/2.50G [00:05<00:27, 82.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 426M/2.50G [00:05<00:27, 80.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 435M/2.50G [00:05<00:26, 83.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 443M/2.50G [00:05<00:26, 83.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 451M/2.50G [00:06<00:26, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 459M/2.50G [00:06<00:26, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 467M/2.50G [00:06<00:26, 81.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▊ | 476M/2.50G [00:06<00:25, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 484M/2.50G [00:06<00:26, 83.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 492M/2.50G [00:06<00:26, 80.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|█▉ | 500M/2.50G [00:06<00:26, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|█▉ | 508M/2.50G [00:06<00:26, 82.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|██ | 516M/2.50G [00:06<00:26, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|██ | 524M/2.50G [00:06<00:25, 83.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 532M/2.50G [00:07<00:25, 82.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 541M/2.50G [00:07<00:25, 83.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██▏ | 549M/2.50G [00:07<00:25, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 556M/2.50G [00:07<00:26, 79.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 564M/2.50G [00:07<00:26, 79.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 572M/2.50G [00:07<00:26, 80.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 580M/2.50G [00:07<00:25, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 588M/2.50G [00:07<00:25, 81.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 595M/2.50G [00:07<00:25, 79.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▎ | 603M/2.50G [00:08<00:27, 75.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 612M/2.50G [00:08<00:25, 79.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 619M/2.50G [00:08<00:25, 79.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 627M/2.50G [00:08<00:25, 80.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▍ | 636M/2.50G [00:08<00:23, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▌ | 644M/2.50G [00:08<00:23, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▌ | 652M/2.50G [00:08<00:23, 83.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▌ | 660M/2.50G [00:08<00:24, 80.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▌ | 668M/2.50G [00:08<00:24, 81.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▋ | 676M/2.50G [00:08<00:24, 80.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 684M/2.50G [00:09<00:24, 79.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 691M/2.50G [00:09<00:25, 77.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 699M/2.50G [00:09<00:25, 75.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 706M/2.50G [00:09<00:25, 76.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 714M/2.50G [00:09<00:24, 78.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 722M/2.50G [00:09<00:24, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 730M/2.50G [00:09<00:23, 82.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▉ | 738M/2.50G [00:09<00:23, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▉ | 746M/2.50G [00:09<00:23, 82.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▉ | 754M/2.50G [00:09<00:23, 82.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|██▉ | 762M/2.50G [00:10<00:23, 79.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|███ | 770M/2.50G [00:10<00:23, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|███ | 778M/2.50G [00:10<00:22, 81.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 786M/2.50G [00:10<00:23, 79.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 793M/2.50G [00:10<00:24, 76.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███▏ | 802M/2.50G [00:10<00:22, 80.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 810M/2.50G [00:10<00:22, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 818M/2.50G [00:10<00:22, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 826M/2.50G [00:10<00:22, 81.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 834M/2.50G [00:10<00:22, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 843M/2.50G [00:11<00:21, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 851M/2.50G [00:11<00:20, 85.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▎ | 859M/2.50G [00:11<00:26, 66.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 866M/2.50G [00:11<00:26, 66.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 877M/2.50G [00:11<00:23, 76.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▍ | 885M/2.50G [00:11<00:22, 78.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▍ | 892M/2.50G [00:11<00:27, 64.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▌ | 904M/2.50G [00:11<00:22, 78.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 912M/2.50G [00:12<00:21, 80.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 920M/2.50G [00:12<00:28, 60.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 928M/2.50G [00:12<00:26, 65.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 937M/2.50G [00:12<00:23, 71.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 944M/2.50G [00:12<00:33, 50.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 955M/2.50G [00:12<00:27, 62.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 963M/2.50G [00:12<00:24, 68.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 972M/2.50G [00:13<00:22, 72.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 979M/2.50G [00:13<00:32, 50.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▊ | 993M/2.50G [00:13<00:24, 68.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▉ | 0.98G/2.50G [00:13<00:23, 69.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▉ | 0.99G/2.50G [00:13<00:22, 73.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|███▉ | 0.99G/2.50G [00:13<00:30, 53.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|███▉ | 1.00G/2.50G [00:14<00:28, 57.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|████ | 1.01G/2.50G [00:14<00:26, 61.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████ | 1.01G/2.50G [00:14<00:24, 65.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████ | 1.02G/2.50G [00:14<00:24, 64.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████ | 1.03G/2.50G [00:14<00:22, 71.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████▏ | 1.04G/2.50G [00:14<00:20, 76.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.05G/2.50G [00:14<00:19, 78.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.05G/2.50G [00:14<00:19, 80.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.06G/2.50G [00:14<00:19, 80.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 1.07G/2.50G [00:15<00:18, 83.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 1.08G/2.50G [00:15<00:18, 81.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 1.09G/2.50G [00:15<00:18, 83.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▎ | 1.09G/2.50G [00:15<00:18, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 1.10G/2.50G [00:15<00:18, 81.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 1.11G/2.50G [00:15<00:17, 86.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▍ | 1.12G/2.50G [00:15<00:17, 87.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 1.13G/2.50G [00:15<00:17, 82.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 1.14G/2.50G [00:15<00:17, 84.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 1.15G/2.50G [00:15<00:16, 88.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 1.15G/2.50G [00:16<00:16, 87.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▋ | 1.16G/2.50G [00:16<00:17, 84.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.17G/2.50G [00:16<00:17, 83.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.18G/2.50G [00:16<00:16, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.19G/2.50G [00:16<00:16, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 1.20G/2.50G [00:16<00:15, 88.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 1.20G/2.50G [00:16<00:16, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 1.21G/2.50G [00:16<00:16, 85.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▊ | 1.22G/2.50G [00:16<00:16, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 1.23G/2.50G [00:16<00:15, 87.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 1.24G/2.50G [00:17<00:16, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|████▉ | 1.24G/2.50G [00:17<00:16, 83.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|█████ | 1.25G/2.50G [00:17<00:16, 82.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|█████ | 1.26G/2.50G [00:17<00:15, 85.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 1.27G/2.50G [00:17<00:16, 81.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 1.28G/2.50G [00:17<00:16, 81.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████▏ | 1.28G/2.50G [00:17<00:16, 80.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 1.29G/2.50G [00:17<00:15, 85.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 1.30G/2.50G [00:17<00:15, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 1.31G/2.50G [00:18<00:15, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 1.32G/2.50G [00:18<00:14, 85.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 1.33G/2.50G [00:18<00:14, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 1.33G/2.50G [00:18<00:15, 82.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▎ | 1.34G/2.50G [00:18<00:15, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▍ | 1.35G/2.50G [00:18<00:14, 85.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▍ | 1.36G/2.50G [00:18<00:14, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▍ | 1.37G/2.50G [00:18<00:14, 85.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▍ | 1.37G/2.50G [00:18<00:14, 85.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 1.38G/2.50G [00:18<00:14, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 1.39G/2.50G [00:19<00:14, 85.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 1.40G/2.50G [00:19<00:13, 85.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 1.41G/2.50G [00:19<00:13, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▋ | 1.41G/2.50G [00:19<00:13, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 1.42G/2.50G [00:19<00:14, 78.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 1.43G/2.50G [00:19<00:13, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.44G/2.50G [00:19<00:13, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.45G/2.50G [00:20<00:26, 43.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.46G/2.50G [00:20<00:20, 55.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▊ | 1.47G/2.50G [00:20<00:18, 60.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 1.47G/2.50G [00:20<00:17, 62.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 1.48G/2.50G [00:20<00:16, 67.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 1.49G/2.50G [00:21<00:27, 38.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|█████▉ | 1.50G/2.50G [00:21<00:20, 52.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|██████ | 1.51G/2.50G [00:21<00:27, 39.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 1.52G/2.50G [00:21<00:19, 53.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 1.53G/2.50G [00:21<00:17, 59.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████▏ | 1.54G/2.50G [00:21<00:15, 65.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 1.54G/2.50G [00:21<00:15, 67.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 1.55G/2.50G [00:21<00:13, 73.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 1.56G/2.50G [00:22<00:13, 75.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 1.57G/2.50G [00:22<00:12, 78.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 1.58G/2.50G [00:22<00:12, 78.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 1.58G/2.50G [00:22<00:12, 78.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▎ | 1.59G/2.50G [00:22<00:12, 77.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 1.60G/2.50G [00:22<00:12, 77.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 1.61G/2.50G [00:22<00:12, 79.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 1.62G/2.50G [00:22<00:12, 77.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 1.62G/2.50G [00:22<00:11, 79.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▌ | 1.63G/2.50G [00:23<00:11, 78.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▌ | 1.64G/2.50G [00:23<00:11, 81.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▌ | 1.65G/2.50G [00:23<00:11, 83.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▌ | 1.66G/2.50G [00:23<00:10, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▋ | 1.66G/2.50G [00:23<00:10, 82.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 1.67G/2.50G [00:23<00:10, 85.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 1.68G/2.50G [00:23<00:10, 83.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 1.69G/2.50G [00:23<00:11, 79.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 1.70G/2.50G [00:23<00:10, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 1.70G/2.50G [00:23<00:10, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 1.71G/2.50G [00:24<00:10, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▊ | 1.72G/2.50G [00:24<00:10, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 1.73G/2.50G [00:24<00:09, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 1.74G/2.50G [00:24<00:09, 83.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|██████▉ | 1.74G/2.50G [00:24<00:09, 82.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|██████▉ | 1.75G/2.50G [00:24<00:10, 80.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|███████ | 1.76G/2.50G [00:24<00:09, 81.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 1.77G/2.50G [00:24<00:09, 82.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 1.77G/2.50G [00:24<00:09, 82.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 1.78G/2.50G [00:24<00:09, 80.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.79G/2.50G [00:25<00:09, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.80G/2.50G [00:25<00:09, 79.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.81G/2.50G [00:25<00:09, 79.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.81G/2.50G [00:25<00:09, 79.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 1.82G/2.50G [00:25<00:09, 80.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 1.83G/2.50G [00:25<00:08, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 1.84G/2.50G [00:25<00:08, 80.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▎ | 1.85G/2.50G [00:25<00:08, 84.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 1.85G/2.50G [00:25<00:08, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 1.86G/2.50G [00:26<00:08, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▍ | 1.87G/2.50G [00:26<00:08, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▍ | 1.88G/2.50G [00:26<00:08, 76.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▌ | 1.88G/2.50G [00:26<00:08, 78.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▌ | 1.89G/2.50G [00:26<00:08, 79.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▌ | 1.90G/2.50G [00:26<00:08, 79.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▌ | 1.91G/2.50G [00:26<00:07, 83.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.92G/2.50G [00:26<00:07, 81.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.92G/2.50G [00:26<00:07, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.93G/2.50G [00:26<00:07, 81.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.94G/2.50G [00:27<00:08, 73.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.95G/2.50G [00:27<00:07, 76.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.96G/2.50G [00:27<00:07, 82.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.96G/2.50G [00:27<00:07, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▊ | 1.97G/2.50G [00:27<00:07, 79.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.98G/2.50G [00:27<00:06, 81.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.99G/2.50G [00:27<00:06, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|███████▉ | 1.99G/2.50G [00:27<00:06, 79.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|███████▉ | 2.00G/2.50G [00:27<00:06, 81.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|████████ | 2.01G/2.50G [00:28<00:06, 81.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 2.02G/2.50G [00:28<00:06, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 2.03G/2.50G [00:28<00:06, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████▏ | 2.03G/2.50G [00:28<00:06, 80.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 2.04G/2.50G [00:28<00:06, 82.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 2.05G/2.50G [00:28<00:05, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 2.06G/2.50G [00:28<00:05, 83.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.07G/2.50G [00:28<00:05, 82.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.07G/2.50G [00:28<00:05, 83.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.08G/2.50G [00:28<00:05, 82.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.09G/2.50G [00:29<00:05, 81.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 2.10G/2.50G [00:29<00:05, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 2.11G/2.50G [00:29<00:05, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 2.11G/2.50G [00:29<00:04, 85.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▍ | 2.12G/2.50G [00:29<00:05, 80.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▌ | 2.13G/2.50G [00:29<00:05, 79.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▌ | 2.14G/2.50G [00:29<00:04, 80.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 2.15G/2.50G [00:29<00:04, 78.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 2.16G/2.50G [00:29<00:04, 86.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▋ | 2.16G/2.50G [00:30<00:04, 84.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 2.17G/2.50G [00:30<00:04, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 2.18G/2.50G [00:30<00:04, 84.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 2.19G/2.50G [00:30<00:04, 83.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.20G/2.50G [00:30<00:04, 80.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.20G/2.50G [00:30<00:03, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.21G/2.50G [00:30<00:03, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▊ | 2.22G/2.50G [00:30<00:03, 83.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▉ | 2.23G/2.50G [00:30<00:03, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▉ | 2.24G/2.50G [00:30<00:03, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 2.24G/2.50G [00:31<00:03, 81.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 2.25G/2.50G [00:31<00:03, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|█████████ | 2.26G/2.50G [00:31<00:03, 83.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.27G/2.50G [00:31<00:03, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.28G/2.50G [00:31<00:03, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.28G/2.50G [00:31<00:02, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.29G/2.50G [00:31<00:02, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.30G/2.50G [00:31<00:02, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.31G/2.50G [00:31<00:02, 83.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.32G/2.50G [00:31<00:02, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.32G/2.50G [00:32<00:02, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.33G/2.50G [00:32<00:02, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▎| 2.34G/2.50G [00:32<00:02, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 2.35G/2.50G [00:32<00:02, 71.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 2.36G/2.50G [00:32<00:01, 81.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▍| 2.37G/2.50G [00:33<00:05, 29.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▍| 2.37G/2.50G [00:33<00:04, 34.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▌| 2.38G/2.50G [00:33<00:03, 35.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▌| 2.39G/2.50G [00:33<00:02, 43.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 2.39G/2.50G [00:33<00:02, 48.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 2.40G/2.50G [00:33<00:02, 52.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 2.41G/2.50G [00:34<00:01, 59.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▋| 2.42G/2.50G [00:34<00:02, 45.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 2.43G/2.50G [00:34<00:01, 64.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 2.44G/2.50G [00:34<00:01, 68.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.44G/2.50G [00:34<00:01, 50.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.45G/2.50G [00:34<00:00, 59.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.46G/2.50G [00:34<00:00, 65.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▊| 2.47G/2.50G [00:35<00:00, 70.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 2.48G/2.50G [00:35<00:00, 74.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 2.49G/2.50G [00:35<00:00, 73.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|█████████▉| 2.49G/2.50G [00:35<00:00, 75.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|█████████▉| 2.50G/2.50G [00:35<00:00, 77.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 2.50G/2.50G [00:35<00:00, 75.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"obj = sm.SummaryDetector(mydict)\n",
"summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n",
"# summary_model, summary_vis_processors = mutils.load_model(\"large\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:16:15.120654Z",
"iopub.status.busy": "2023-06-01T12:16:15.120319Z",
"iopub.status.idle": "2023-06-01T12:17:00.015145Z",
"shell.execute_reply": "2023-06-01T12:17:00.014336Z"
},
"tags": []
},
"outputs": [],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n",
" summary_model=summary_model, summary_vis_processors=summary_vis_processors\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"Convert the dictionary of dictionarys into a dictionary with lists:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.019450Z",
"iopub.status.busy": "2023-06-01T12:17:00.019124Z",
"iopub.status.idle": "2023-06-01T12:17:00.025208Z",
"shell.execute_reply": "2023-06-01T12:17:00.024427Z"
},
"tags": []
},
"outputs": [],
"source": [
"outdict = mutils.append_data_to_dict(mydict)\n",
"df = mutils.dump_df(outdict)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.028787Z",
"iopub.status.busy": "2023-06-01T12:17:00.028487Z",
"iopub.status.idle": "2023-06-01T12:17:00.043856Z",
"shell.execute_reply": "2023-06-01T12:17:00.042958Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" <th>const_image_summary</th>\n",
" <th>3_non-deterministic summary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>data/102730_eng.png</td>\n",
" <td>two people in blue coats spray disinfection a van</td>\n",
" <td>[a couple of people dressed in blue outside, t...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>data/102141_2_eng.png</td>\n",
" <td>a collage of images including a corona sign, a...</td>\n",
" <td>[collage of different medical images with sign...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>data/106349S_por.png</td>\n",
" <td>a man wearing a face mask while looking at a c...</td>\n",
" <td>[a news anchor wearing a white mask and holdin...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename const_image_summary \\\n",
"0 data/102730_eng.png two people in blue coats spray disinfection a van \n",
"1 data/102141_2_eng.png a collage of images including a corona sign, a... \n",
"2 data/106349S_por.png a man wearing a face mask while looking at a c... \n",
"\n",
" 3_non-deterministic summary \n",
"0 [a couple of people dressed in blue outside, t... \n",
"1 [collage of different medical images with sign... \n",
"2 [a news anchor wearing a white mask and holdin... "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(10)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.047747Z",
"iopub.status.busy": "2023-06-01T12:17:00.047431Z",
"iopub.status.idle": "2023-06-01T12:17:00.053648Z",
"shell.execute_reply": "2023-06-01T12:17:00.052839Z"
}
},
"outputs": [],
"source": [
"df.to_csv(\"data_out.csv\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manually inspect the summaries\n",
"\n",
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n",
"\n",
"`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n",
"\n",
"`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.057463Z",
"iopub.status.busy": "2023-06-01T12:17:00.057158Z",
"iopub.status.idle": "2023-06-01T12:17:00.114175Z",
"shell.execute_reply": "2023-06-01T12:17:00.113288Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dash is running on http://127.0.0.1:8055/\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:dash.dash:Dash is running on http://127.0.0.1:8055/\n",
"\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"100%\"\n",
" height=\"650\"\n",
" src=\"http://127.0.0.1:8055/\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x7f4938d58c10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate answers to free-form questions about images written in natural language. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Set the list of questions as a list of strings:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.118628Z",
"iopub.status.busy": "2023-06-01T12:17:00.118296Z",
"iopub.status.idle": "2023-06-01T12:17:00.122483Z",
"shell.execute_reply": "2023-06-01T12:17:00.121605Z"
}
},
"outputs": [],
"source": [
"list_of_questions = [\n",
" \"How many persons on the picture?\",\n",
" \"Are there any politicians in the picture?\",\n",
" \"Does the picture show something from medicine?\",\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Explore the analysis using the interface:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.126598Z",
"iopub.status.busy": "2023-06-01T12:17:00.125914Z",
"iopub.status.idle": "2023-06-01T12:17:00.627356Z",
"shell.execute_reply": "2023-06-01T12:17:00.626420Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dash is running on http://127.0.0.1:8055/\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:dash.dash:Dash is running on http://127.0.0.1:8055/\n",
"\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"100%\"\n",
" height=\"650\"\n",
" src=\"http://127.0.0.1:8055/\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x7f492df88ca0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Or directly analyze for further processing\n",
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:17:00.631687Z",
"iopub.status.busy": "2023-06-01T12:17:00.631181Z",
"iopub.status.idle": "2023-06-01T12:18:05.380413Z",
"shell.execute_reply": "2023-06-01T12:18:05.379507Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/1.35G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 5.70M/1.35G [00:00<00:24, 58.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 13.4M/1.35G [00:00<00:20, 71.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 23.0M/1.35G [00:00<00:16, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 31.0M/1.35G [00:00<00:18, 77.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 38.4M/1.35G [00:00<00:21, 65.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 46.3M/1.35G [00:00<00:19, 70.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 55.2M/1.35G [00:00<00:18, 76.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 62.7M/1.35G [00:00<00:18, 76.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▌ | 70.2M/1.35G [00:01<00:18, 74.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 79.4M/1.35G [00:01<00:16, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▋ | 87.4M/1.35G [00:01<00:16, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 95.2M/1.35G [00:01<00:16, 81.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 103M/1.35G [00:01<00:16, 81.0MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 111M/1.35G [00:01<00:17, 77.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▊ | 119M/1.35G [00:01<00:16, 79.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 127M/1.35G [00:01<00:16, 80.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|▉ | 134M/1.35G [00:01<00:16, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|█ | 142M/1.35G [00:01<00:18, 71.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█ | 150M/1.35G [00:02<00:17, 75.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█▏ | 158M/1.35G [00:02<00:16, 77.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 167M/1.35G [00:02<00:15, 81.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 175M/1.35G [00:02<00:15, 82.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 183M/1.35G [00:02<00:14, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 192M/1.35G [00:02<00:14, 85.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 200M/1.35G [00:02<00:14, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 209M/1.35G [00:02<00:14, 87.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▌ | 217M/1.35G [00:02<00:14, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▋ | 226M/1.35G [00:02<00:14, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 234M/1.35G [00:03<00:14, 84.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 242M/1.35G [00:03<00:14, 84.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 250M/1.35G [00:03<00:14, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▊ | 258M/1.35G [00:03<00:15, 75.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 266M/1.35G [00:03<00:15, 75.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|█▉ | 274M/1.35G [00:03<00:14, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 283M/1.35G [00:03<00:13, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 291M/1.35G [00:03<00:13, 82.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 299M/1.35G [00:03<00:13, 82.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 308M/1.35G [00:04<00:12, 87.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 317M/1.35G [00:04<00:13, 84.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▎ | 325M/1.35G [00:04<00:13, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 333M/1.35G [00:04<00:13, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▍ | 342M/1.35G [00:04<00:12, 88.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▌ | 351M/1.35G [00:04<00:12, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▌ | 360M/1.35G [00:04<00:12, 88.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 369M/1.35G [00:04<00:12, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 377M/1.35G [00:04<00:12, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 386M/1.35G [00:04<00:12, 86.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▊ | 394M/1.35G [00:05<00:12, 79.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▉ | 403M/1.35G [00:05<00:12, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|██▉ | 411M/1.35G [00:05<00:12, 81.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|███ | 420M/1.35G [00:05<00:11, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 429M/1.35G [00:05<00:11, 84.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 437M/1.35G [00:05<00:12, 78.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 445M/1.35G [00:05<00:12, 79.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 452M/1.35G [00:05<00:12, 79.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 461M/1.35G [00:05<00:11, 80.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 468M/1.35G [00:06<00:15, 61.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▍ | 478M/1.35G [00:06<00:13, 69.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▌ | 486M/1.35G [00:06<00:12, 74.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 494M/1.35G [00:06<00:12, 74.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▋ | 503M/1.35G [00:06<00:11, 78.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 512M/1.35G [00:06<00:10, 84.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 520M/1.35G [00:06<00:11, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 528M/1.35G [00:06<00:10, 83.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▉ | 536M/1.35G [00:07<00:11, 78.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|███▉ | 546M/1.35G [00:07<00:10, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|████ | 554M/1.35G [00:07<00:10, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████ | 562M/1.35G [00:07<00:10, 84.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 41%|████▏ | 570M/1.35G [00:07<00:10, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 579M/1.35G [00:07<00:09, 86.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 588M/1.35G [00:07<00:09, 87.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 43%|████▎ | 596M/1.35G [00:07<00:09, 85.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 605M/1.35G [00:07<00:09, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 613M/1.35G [00:07<00:09, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 621M/1.35G [00:08<00:09, 86.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 630M/1.35G [00:08<00:09, 83.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 638M/1.35G [00:08<00:09, 82.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 646M/1.35G [00:08<00:09, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 653M/1.35G [00:08<00:09, 79.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 662M/1.35G [00:08<00:10, 70.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▊ | 672M/1.35G [00:08<00:09, 80.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 680M/1.35G [00:08<00:08, 81.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|████▉ | 688M/1.35G [00:08<00:08, 82.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 697M/1.35G [00:09<00:08, 85.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 705M/1.35G [00:09<00:08, 81.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 714M/1.35G [00:09<00:08, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 722M/1.35G [00:09<00:08, 83.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 730M/1.35G [00:09<00:09, 71.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▎ | 739M/1.35G [00:09<00:08, 76.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▍ | 746M/1.35G [00:09<00:08, 77.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▍ | 755M/1.35G [00:09<00:07, 82.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 763M/1.35G [00:10<00:10, 63.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 774M/1.35G [00:10<00:08, 75.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 782M/1.35G [00:10<00:08, 72.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 791M/1.35G [00:10<00:07, 78.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 799M/1.35G [00:10<00:07, 78.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▊ | 807M/1.35G [00:10<00:07, 79.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 59%|█████▉ | 815M/1.35G [00:10<00:08, 70.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|█████▉ | 824M/1.35G [00:10<00:07, 78.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|██████ | 832M/1.35G [00:10<00:07, 79.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 840M/1.35G [00:11<00:10, 55.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 852M/1.35G [00:11<00:07, 69.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 860M/1.35G [00:11<00:07, 73.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 868M/1.35G [00:11<00:06, 77.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▎ | 876M/1.35G [00:11<00:06, 79.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 885M/1.35G [00:11<00:06, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 894M/1.35G [00:11<00:06, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▌ | 902M/1.35G [00:11<00:05, 84.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▌ | 911M/1.35G [00:11<00:05, 85.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 919M/1.35G [00:12<00:05, 86.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 927M/1.35G [00:12<00:05, 83.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 936M/1.35G [00:12<00:05, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 945M/1.35G [00:12<00:05, 84.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 953M/1.35G [00:12<00:05, 84.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|██████▉ | 962M/1.35G [00:12<00:04, 88.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|███████ | 971M/1.35G [00:12<00:05, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 979M/1.35G [00:12<00:05, 76.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 986M/1.35G [00:12<00:05, 75.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 994M/1.35G [00:13<00:05, 77.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 0.98G/1.35G [00:13<00:04, 79.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 0.99G/1.35G [00:13<00:04, 84.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 1.00G/1.35G [00:13<00:04, 84.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▍ | 1.00G/1.35G [00:13<00:04, 77.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▌ | 1.01G/1.35G [00:13<00:04, 81.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▌ | 1.02G/1.35G [00:13<00:04, 80.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▋ | 1.03G/1.35G [00:13<00:04, 82.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.04G/1.35G [00:13<00:03, 86.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.05G/1.35G [00:14<00:03, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 78%|███████▊ | 1.05G/1.35G [00:14<00:03, 86.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.06G/1.35G [00:14<00:03, 86.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▉ | 1.07G/1.35G [00:14<00:03, 84.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|████████ | 1.08G/1.35G [00:14<00:03, 84.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 1.09G/1.35G [00:14<00:03, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████▏ | 1.09G/1.35G [00:14<00:03, 84.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 1.10G/1.35G [00:14<00:03, 79.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 1.11G/1.35G [00:14<00:03, 83.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 1.12G/1.35G [00:14<00:03, 80.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▎ | 1.13G/1.35G [00:15<00:02, 84.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 1.14G/1.35G [00:15<00:02, 82.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▍ | 1.14G/1.35G [00:15<00:02, 85.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 1.15G/1.35G [00:15<00:02, 86.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 1.16G/1.35G [00:15<00:02, 81.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 1.17G/1.35G [00:15<00:02, 84.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 1.18G/1.35G [00:15<00:02, 86.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 1.19G/1.35G [00:15<00:02, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▊ | 1.20G/1.35G [00:15<00:01, 88.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▉ | 1.20G/1.35G [00:16<00:01, 86.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 1.21G/1.35G [00:16<00:01, 88.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 1.22G/1.35G [00:16<00:01, 86.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████▏| 1.23G/1.35G [00:16<00:01, 89.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 1.24G/1.35G [00:16<00:01, 85.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 1.25G/1.35G [00:16<00:01, 87.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 1.25G/1.35G [00:16<00:01, 83.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 1.26G/1.35G [00:16<00:01, 88.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 1.27G/1.35G [00:16<00:00, 87.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▌| 1.28G/1.35G [00:16<00:00, 87.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 1.29G/1.35G [00:17<00:00, 85.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▋| 1.30G/1.35G [00:17<00:00, 87.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 1.31G/1.35G [00:17<00:00, 85.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 1.31G/1.35G [00:17<00:00, 85.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 1.32G/1.35G [00:17<00:00, 84.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 1.33G/1.35G [00:17<00:00, 86.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 1.34G/1.35G [00:17<00:00, 83.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 1.35G/1.35G [00:17<00:00, 81.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert to dataframe and write csv\n",
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:18:05.385968Z",
"iopub.status.busy": "2023-06-01T12:18:05.385402Z",
"iopub.status.idle": "2023-06-01T12:18:05.391239Z",
"shell.execute_reply": "2023-06-01T12:18:05.390364Z"
}
},
"outputs": [],
"source": [
"outdict2 = mutils.append_data_to_dict(mydict)\n",
"df2 = mutils.dump_df(outdict2)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:18:05.398488Z",
"iopub.status.busy": "2023-06-01T12:18:05.398193Z",
"iopub.status.idle": "2023-06-01T12:18:05.410221Z",
"shell.execute_reply": "2023-06-01T12:18:05.409384Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" <th>const_image_summary</th>\n",
" <th>3_non-deterministic summary</th>\n",
" <th>How many persons on the picture?</th>\n",
" <th>Are there any politicians in the picture?</th>\n",
" <th>Does the picture show something from medicine?</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>data/102730_eng.png</td>\n",
" <td>two people in blue coats spray disinfection a van</td>\n",
" <td>[a couple of people dressed in blue outside, t...</td>\n",
" <td>2</td>\n",
" <td>no</td>\n",
" <td>yes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>data/102141_2_eng.png</td>\n",
" <td>a collage of images including a corona sign, a...</td>\n",
" <td>[collage of different medical images with sign...</td>\n",
" <td>1</td>\n",
" <td>no</td>\n",
" <td>yes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>data/106349S_por.png</td>\n",
" <td>a man wearing a face mask while looking at a c...</td>\n",
" <td>[a news anchor wearing a white mask and holdin...</td>\n",
" <td>1</td>\n",
" <td>yes</td>\n",
" <td>yes</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename const_image_summary \\\n",
"0 data/102730_eng.png two people in blue coats spray disinfection a van \n",
"1 data/102141_2_eng.png a collage of images including a corona sign, a... \n",
"2 data/106349S_por.png a man wearing a face mask while looking at a c... \n",
"\n",
" 3_non-deterministic summary \\\n",
"0 [a couple of people dressed in blue outside, t... \n",
"1 [collage of different medical images with sign... \n",
"2 [a news anchor wearing a white mask and holdin... \n",
"\n",
" How many persons on the picture? Are there any politicians in the picture? \\\n",
"0 2 no \n",
"1 1 no \n",
"2 1 yes \n",
"\n",
" Does the picture show something from medicine? \n",
"0 yes \n",
"1 yes \n",
"2 yes "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-01T12:18:05.417822Z",
"iopub.status.busy": "2023-06-01T12:18:05.417249Z",
"iopub.status.idle": "2023-06-01T12:18:05.422421Z",
"shell.execute_reply": "2023-06-01T12:18:05.421789Z"
}
},
"outputs": [],
"source": [
"df2.to_csv(\"data_out2.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"vscode": {
"interpreter": {
"hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}