зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-11-01 14:36:07 +02:00
5797 строки
252 KiB
Plaintext
5797 строки
252 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "dcaa3da1",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Notebook for text extraction on image\n",
|
||
"\n",
|
||
"The text extraction and analysis is carried out using a variety of tools: \n",
|
||
"\n",
|
||
"1. Text extraction from the image using [google-cloud-vision](https://cloud.google.com/vision) \n",
|
||
"1. Language detection of the extracted text using [Googletrans](https://py-googletrans.readthedocs.io/en/latest/) \n",
|
||
"1. Translation into English or other languages using [Googletrans](https://py-googletrans.readthedocs.io/en/latest/) \n",
|
||
"1. Cleaning of the text using [spacy](https://spacy.io/) \n",
|
||
"1. Spell-check using [TextBlob](https://textblob.readthedocs.io/en/dev/index.html) \n",
|
||
"1. Subjectivity analysis using [TextBlob](https://textblob.readthedocs.io/en/dev/index.html) \n",
|
||
"1. Text summarization using [transformers](https://huggingface.co/docs/transformers/index) pipelines\n",
|
||
"1. Sentiment analysis using [transformers](https://huggingface.co/docs/transformers/index) pipelines \n",
|
||
"1. Named entity recognition using [transformers](https://huggingface.co/docs/transformers/index) pipelines \n",
|
||
"1. Topic analysis using [BERTopic](https://github.com/MaartenGr/BERTopic) \n",
|
||
"\n",
|
||
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
|
||
"\n",
|
||
"After that, we can import `ammico` and read in the files given a folder path."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "f43f327c",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:18:12.722055Z",
|
||
"iopub.status.busy": "2023-06-01T12:18:12.721347Z",
|
||
"iopub.status.idle": "2023-06-01T12:18:12.733501Z",
|
||
"shell.execute_reply": "2023-06-01T12:18:12.732572Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# if running on google colab\n",
|
||
"# flake8-noqa-cell\n",
|
||
"import os\n",
|
||
"\n",
|
||
"if \"google.colab\" in str(get_ipython()):\n",
|
||
" # update python version\n",
|
||
" # install setuptools\n",
|
||
" # %pip install setuptools==61 -qqq\n",
|
||
" # install ammico\n",
|
||
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||
" # mount google drive for data and API key\n",
|
||
" from google.colab import drive\n",
|
||
"\n",
|
||
" drive.mount(\"/content/drive\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "cf362e60",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:18:12.737718Z",
|
||
"iopub.status.busy": "2023-06-01T12:18:12.737107Z",
|
||
"iopub.status.idle": "2023-06-01T12:18:33.025169Z",
|
||
"shell.execute_reply": "2023-06-01T12:18:33.024138Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import os\n",
|
||
"import ammico\n",
|
||
"from ammico import utils as mutils\n",
|
||
"from ammico import display as mdisplay"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "fddba721",
|
||
"metadata": {},
|
||
"source": [
|
||
"We select a subset of image files to try the text extraction on, see the `limit` keyword. The `find_files` function finds image files within a given directory: "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "27675810",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:18:33.031194Z",
|
||
"iopub.status.busy": "2023-06-01T12:18:33.029964Z",
|
||
"iopub.status.idle": "2023-06-01T12:18:33.035549Z",
|
||
"shell.execute_reply": "2023-06-01T12:18:33.034647Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Here you need to provide the path to your google drive folder\n",
|
||
"# or local folder containing the images\n",
|
||
"images = mutils.find_files(\n",
|
||
" path=\"data/\",\n",
|
||
" limit=10,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "3a7dfe11",
|
||
"metadata": {},
|
||
"source": [
|
||
"We need to initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "8b32409f",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:18:33.039806Z",
|
||
"iopub.status.busy": "2023-06-01T12:18:33.039314Z",
|
||
"iopub.status.idle": "2023-06-01T12:18:33.043651Z",
|
||
"shell.execute_reply": "2023-06-01T12:18:33.042810Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"mydict = mutils.initialize_dict(images)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7b8b929f",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Google cloud vision API\n",
|
||
"\n",
|
||
"For this you need an API key and have the app activated in your google console. The first 1000 images per month are free (July 2022)."
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "cbf74c0b-52fe-4fb8-b617-f18611e8f986",
|
||
"metadata": {},
|
||
"source": [
|
||
"```\n",
|
||
"os.environ[\n",
|
||
" \"GOOGLE_APPLICATION_CREDENTIALS\"\n",
|
||
"] = \"your-credentials.json\"\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "0891b795-c7fe-454c-a45d-45fadf788142",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Inspect the elements per image\n",
|
||
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
|
||
"Here, we display the text extraction and translation results provided by the above libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "7c6ecc88",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:18:33.047736Z",
|
||
"iopub.status.busy": "2023-06-01T12:18:33.047163Z",
|
||
"iopub.status.idle": "2023-06-01T12:18:33.108082Z",
|
||
"shell.execute_reply": "2023-06-01T12:18:33.107102Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Dash is running on http://127.0.0.1:8054/\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"\n",
|
||
" <iframe\n",
|
||
" width=\"100%\"\n",
|
||
" height=\"650\"\n",
|
||
" src=\"http://127.0.0.1:8054/\"\n",
|
||
" frameborder=\"0\"\n",
|
||
" allowfullscreen\n",
|
||
" \n",
|
||
" ></iframe>\n",
|
||
" "
|
||
],
|
||
"text/plain": [
|
||
"<IPython.lib.display.IFrame at 0x7f47deb6ea60>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"text-on-image\")\n",
|
||
"analysis_explorer.run_server(port=8054)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "9c3e72b5-0e57-4019-b45e-3e36a74e7f52",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Or directly analyze for further processing\n",
|
||
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded. Set the keyword `analyse_text` to `True` if you want the text to be analyzed (spell check, subjectivity, text summary, sentiment, NER)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "365c78b1-7ff4-4213-86fa-6a0a2d05198f",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:18:33.113638Z",
|
||
"iopub.status.busy": "2023-06-01T12:18:33.113065Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:15.708582Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:15.693416Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Collecting en-core-web-md==3.5.0\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.5.0/en_core_web_md-3.5.0-py3-none-any.whl (42.8 MB)\n",
|
||
"\u001b[?25l 0.0/42.8 MB ? eta -:--:--\r",
|
||
"\u001b[2K 0.1/42.8 MB 2.5 MB/s eta 0:00:18\r",
|
||
"\u001b[2K ╸ 0.9/42.8 MB 12.8 MB/s eta 0:00:04\r",
|
||
"\u001b[2K ━━━━━╸ 6.4/42.8 MB 59.5 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━╸ 11.9/42.8 MB 152.6 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━ 16.9/42.8 MB 148.9 MB/s eta 0:00:01"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━ 20.2/42.8 MB 119.0 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━ 23.5/42.8 MB 103.9 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━ 26.1/42.8 MB 90.6 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 29.5/42.8 MB 90.1 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 32.5/42.8 MB 84.1 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 35.9/42.8 MB 89.9 MB/s eta 0:00:01"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 39.4/42.8 MB 85.8 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 98.9 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 98.9 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 98.9 MB/s eta 0:00:01\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸ 42.8/42.8 MB 98.9 MB/s eta 0:00:01"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\r",
|
||
"\u001b[2K ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.8/42.8 MB 37.4 MB/s eta 0:00:00\n",
|
||
"\u001b[?25hRequirement already satisfied: spacy<3.6.0,>=3.5.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from en-core-web-md==3.5.0) (3.5.3)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.11 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.0.12)\n",
|
||
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.0.4)\n",
|
||
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.0.9)\n",
|
||
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.0.7)\n",
|
||
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.0.8)\n",
|
||
"Requirement already satisfied: thinc<8.2.0,>=8.1.8 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (8.1.10)\n",
|
||
"Requirement already satisfied: wasabi<1.2.0,>=0.9.1 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.1.1)\n",
|
||
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.4.6)\n",
|
||
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.0.8)\n",
|
||
"Requirement already satisfied: typer<0.8.0,>=0.3.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.7.0)\n",
|
||
"Requirement already satisfied: pathy>=0.10.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.10.1)\n",
|
||
"Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (6.3.0)\n",
|
||
"Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (4.65.0)\n",
|
||
"Requirement already satisfied: numpy>=1.15.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.23.4)\n",
|
||
"Requirement already satisfied: requests<3.0.0,>=2.13.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.31.0)\n",
|
||
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.10.8)\n",
|
||
"Requirement already satisfied: jinja2 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.1.2)\n",
|
||
"Requirement already satisfied: setuptools in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (58.1.0)\n",
|
||
"Requirement already satisfied: packaging>=20.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (23.1)\n",
|
||
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.3.0)\n",
|
||
"Requirement already satisfied: typing-extensions>=4.2.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (4.6.2)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (3.1.0)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.10)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (1.26.16)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from requests<3.0.0,>=2.13.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2023.5.7)\n",
|
||
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from thinc<8.2.0,>=8.1.8->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.7.9)\n",
|
||
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from thinc<8.2.0,>=8.1.8->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (0.0.4)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Requirement already satisfied: click<9.0.0,>=7.1.1 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from typer<0.8.0,>=0.3.0->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (8.1.3)\n",
|
||
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages (from jinja2->spacy<3.6.0,>=3.5.0->en-core-web-md==3.5.0) (2.1.2)\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Installing collected packages: en-core-web-md\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Successfully installed en-core-web-md-3.5.0\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n",
|
||
"[notice] A new release of pip is available: 22.0.4 -> 23.1.2\n",
|
||
"[notice] To update, run: pip install --upgrade pip\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
|
||
"You can now load the package via spacy.load('en_core_web_md')\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "3cd00f535df4400aaea91e49c87b73d4",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)/a4f8f3e/config.json: 0%| | 0.00/1.80k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "9d35db922d7a4a2f8bde2ee496ab61d7",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading pytorch_model.bin: 0%| | 0.00/1.22G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "1237eb15700d44c28e6b5664a7853f4c",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "a80a050157b2418c8ccb946b0c02c881",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)e/a4f8f3e/vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "1222eb19594f4f4990a76ed9fed1d076",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)e/a4f8f3e/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "2a00dd7441bf49c886ddd2980ef5a60d",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)/af0f99b/config.json: 0%| | 0.00/629 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "d6dc3a01fad24aff9997442c9ba22f5b",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading pytorch_model.bin: 0%| | 0.00/268M [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "594eb95c426b45dbb8a5ae42fabeb4d4",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)okenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "fe69b86b82ee4c9db319987b8dc2d7a2",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)ve/af0f99b/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "e70cfd30e72046788c2a496b3c5511b4",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)/f2482bf/config.json: 0%| | 0.00/998 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "3ea45f6a008b4d2dbe372fa5a8d320e0",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading pytorch_model.bin: 0%| | 0.00/1.33G [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "3401384d35e344359fd40c47fec60720",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)okenizer_config.json: 0%| | 0.00/60.0 [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "9abdbf5b2147498f9db38f1f922e181b",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"Downloading (…)ve/f2482bf/vocab.txt: 0%| | 0.00/213k [00:00<?, ?B/s]"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"for key in mydict:\n",
|
||
" mydict[key] = ammico.text.TextDetector(\n",
|
||
" mydict[key], analyse_text=True\n",
|
||
" ).analyse_image()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "3c063eda",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Convert to dataframe and write csv\n",
|
||
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "5709c2cd",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:15.753697Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:15.752254Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:15.872247Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:15.870899Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"outdict = mutils.append_data_to_dict(mydict)\n",
|
||
"df = mutils.dump_df(outdict)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "ae182eb7",
|
||
"metadata": {},
|
||
"source": [
|
||
"Check the dataframe:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "c4f05637",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:15.877626Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:15.877265Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:16.057892Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:16.056828Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>filename</th>\n",
|
||
" <th>text</th>\n",
|
||
" <th>text_language</th>\n",
|
||
" <th>text_english</th>\n",
|
||
" <th>text_clean</th>\n",
|
||
" <th>text_english_correct</th>\n",
|
||
" <th>polarity</th>\n",
|
||
" <th>subjectivity</th>\n",
|
||
" <th>text_summary</th>\n",
|
||
" <th>sentiment</th>\n",
|
||
" <th>sentiment_score</th>\n",
|
||
" <th>entity</th>\n",
|
||
" <th>entity_type</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>data/102730_eng.png</td>\n",
|
||
" <td>400 DEATHS GET E-BOOK X AN Corporation ncy Ser...</td>\n",
|
||
" <td>en</td>\n",
|
||
" <td>400 DEATHS GET E-BOOK X AN Corporation ncy Ser...</td>\n",
|
||
" <td>DEATHS GET E - BOOK X AN Corporation Services ...</td>\n",
|
||
" <td>400 DEATHS GET E-BOOK X of Corporation ney Ser...</td>\n",
|
||
" <td>-0.125000</td>\n",
|
||
" <td>0.375000</td>\n",
|
||
" <td>A municipal worker sprays disinfectant on his...</td>\n",
|
||
" <td>NEGATIVE</td>\n",
|
||
" <td>0.991692</td>\n",
|
||
" <td>[AN Corporation ncy Services, Ahmedabad, RE, #...</td>\n",
|
||
" <td>[ORG, LOC, PER, ORG]</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>data/102141_2_eng.png</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>en</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE...</td>\n",
|
||
" <td>0.000000</td>\n",
|
||
" <td>0.000000</td>\n",
|
||
" <td>Coronavirus QUARANTINE CORONAVIRUS OUTBREAK</td>\n",
|
||
" <td>NEGATIVE</td>\n",
|
||
" <td>0.976247</td>\n",
|
||
" <td>[CORONAVIRUS, ##AR, ##TI, ##RONAVIR, ##C, Co]</td>\n",
|
||
" <td>[ORG, MISC, MISC, ORG, MISC, MISC]</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>data/106349S_por.png</td>\n",
|
||
" <td>NEWS URGENTE SAMSUNG AO VIVO Rio de Janeiro NO...</td>\n",
|
||
" <td>pt</td>\n",
|
||
" <td>NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO...</td>\n",
|
||
" <td>NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO...</td>\n",
|
||
" <td>NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO...</td>\n",
|
||
" <td>-0.106818</td>\n",
|
||
" <td>0.588636</td>\n",
|
||
" <td>NEW COUNTING METHOD RJ City HALL EXCLUDES 1,1...</td>\n",
|
||
" <td>NEGATIVE</td>\n",
|
||
" <td>0.990659</td>\n",
|
||
" <td>[Rio de Janeiro, C, ##IT, P, ##NA, ##LTO]</td>\n",
|
||
" <td>[LOC, ORG, LOC, LOC, ORG, LOC]</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" filename text \\\n",
|
||
"0 data/102730_eng.png 400 DEATHS GET E-BOOK X AN Corporation ncy Ser... \n",
|
||
"1 data/102141_2_eng.png CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... \n",
|
||
"2 data/106349S_por.png NEWS URGENTE SAMSUNG AO VIVO Rio de Janeiro NO... \n",
|
||
"\n",
|
||
" text_language text_english \\\n",
|
||
"0 en 400 DEATHS GET E-BOOK X AN Corporation ncy Ser... \n",
|
||
"1 en CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... \n",
|
||
"2 pt NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO... \n",
|
||
"\n",
|
||
" text_clean \\\n",
|
||
"0 DEATHS GET E - BOOK X AN Corporation Services ... \n",
|
||
"1 CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... \n",
|
||
"2 NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO... \n",
|
||
"\n",
|
||
" text_english_correct polarity subjectivity \\\n",
|
||
"0 400 DEATHS GET E-BOOK X of Corporation ney Ser... -0.125000 0.375000 \n",
|
||
"1 CORONAVIRUS QUARANTINE CORONAVIRUS OUTBREAK BE... 0.000000 0.000000 \n",
|
||
"2 NEWS URGENT SAMSUNG LIVE Rio de Janeiro NEW CO... -0.106818 0.588636 \n",
|
||
"\n",
|
||
" text_summary sentiment \\\n",
|
||
"0 A municipal worker sprays disinfectant on his... NEGATIVE \n",
|
||
"1 Coronavirus QUARANTINE CORONAVIRUS OUTBREAK NEGATIVE \n",
|
||
"2 NEW COUNTING METHOD RJ City HALL EXCLUDES 1,1... NEGATIVE \n",
|
||
"\n",
|
||
" sentiment_score entity \\\n",
|
||
"0 0.991692 [AN Corporation ncy Services, Ahmedabad, RE, #... \n",
|
||
"1 0.976247 [CORONAVIRUS, ##AR, ##TI, ##RONAVIR, ##C, Co] \n",
|
||
"2 0.990659 [Rio de Janeiro, C, ##IT, P, ##NA, ##LTO] \n",
|
||
"\n",
|
||
" entity_type \n",
|
||
"0 [ORG, LOC, PER, ORG] \n",
|
||
"1 [ORG, MISC, MISC, ORG, MISC, MISC] \n",
|
||
"2 [LOC, ORG, LOC, LOC, ORG, LOC] "
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df.head(10)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "eedf1e47",
|
||
"metadata": {},
|
||
"source": [
|
||
"Write the csv file - here you should provide a file path and file name for the csv file to be written."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "bf6c9ddb",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:16.062788Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:16.062440Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:16.112326Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:16.110968Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Write the csv\n",
|
||
"df.to_csv(\"./data_out.csv\")"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "4bc8ac0a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Topic analysis\n",
|
||
"The topic analysis is carried out using [BERTopic](https://maartengr.github.io/BERTopic/index.html) using an embedded model through a [spaCy](https://spacy.io/) pipeline."
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "4931941b",
|
||
"metadata": {},
|
||
"source": [
|
||
"BERTopic takes a list of strings as input. The more items in the list, the better for the topic modeling. If the below returns an error for `analyse_topic()`, the reason can be that your dataset is too small.\n",
|
||
"\n",
|
||
"You can pass which dataframe entry you would like to have analyzed. The default is `text_english`, but you could for example also select `text_summary` or `text_english_correct` setting the keyword `analyze_text` as so:\n",
|
||
"\n",
|
||
"`ammico.text.PostprocessText(mydict=mydict, analyze_text=\"text_summary\").analyse_topic()`\n",
|
||
"\n",
|
||
"### Option 1: Use the dictionary as obtained from the above analysis."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "a3450a61",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:16.119691Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:16.119326Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:36.620257Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:36.618307Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Reading data from dict.\n"
|
||
]
|
||
},
|
||
{
|
||
"ename": "TypeError",
|
||
"evalue": "Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k.",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/bertopic/_bertopic.py:2868\u001b[0m, in \u001b[0;36mBERTopic._reduce_dimensionality\u001b[0;34m(self, embeddings, y, partial_fit)\u001b[0m\n\u001b[1;32m 2867\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 2868\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mumap_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2869\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2684\u001b[0m, in \u001b[0;36mUMAP.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransform_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 2684\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_, aux_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_embed_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raw_data\u001b[49m\u001b[43m[\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# JH why raw data?\u001b[39;49;00m\n\u001b[1;32m 2689\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2690\u001b[0m \u001b[38;5;66;03m# Assign any points that are fully disconnected from our manifold(s) to have embedding\u001b[39;00m\n\u001b[1;32m 2691\u001b[0m \u001b[38;5;66;03m# coordinates of np.nan. These will be filtered by our plotting functions automatically.\u001b[39;00m\n\u001b[1;32m 2692\u001b[0m \u001b[38;5;66;03m# They also prevent users from being deceived a distance query to one of these points.\u001b[39;00m\n\u001b[1;32m 2693\u001b[0m \u001b[38;5;66;03m# Might be worth moving this into simplicial_set_embedding or _fit_embed_data\u001b[39;00m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2717\u001b[0m, in \u001b[0;36mUMAP._fit_embed_data\u001b[0;34m(self, X, n_epochs, init, random_state)\u001b[0m\n\u001b[1;32m 2714\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"A method wrapper for simplicial_set_embedding that can be\u001b[39;00m\n\u001b[1;32m 2715\u001b[0m \u001b[38;5;124;03mreplaced by subclasses.\u001b[39;00m\n\u001b[1;32m 2716\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m-> 2717\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msimplicial_set_embedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2718\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2719\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgraph_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2720\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2721\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initial_alpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2722\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_a\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2723\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_b\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2724\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepulsion_strength\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2725\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnegative_sample_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2726\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2727\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2728\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2729\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_input_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2730\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2731\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdensmap\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2732\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_densmap_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2733\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_dens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2734\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2735\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2736\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_metric\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meuclidean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43ml2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2737\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2738\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2739\u001b[0m \u001b[43m \u001b[49m\u001b[43mtqdm_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtqdm_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2740\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:1078\u001b[0m, in \u001b[0;36msimplicial_set_embedding\u001b[0;34m(data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric, output_metric_kwds, euclidean_output, parallel, verbose, tqdm_kwds)\u001b[0m\n\u001b[1;32m 1076\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(init, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m init \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspectral\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1077\u001b[0m \u001b[38;5;66;03m# We add a little noise to avoid local minima for optimization to come\u001b[39;00m\n\u001b[0;32m-> 1078\u001b[0m initialisation \u001b[38;5;241m=\u001b[39m \u001b[43mspectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1079\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1080\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1081\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1082\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1083\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1084\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1085\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1086\u001b[0m expansion \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10.0\u001b[39m \u001b[38;5;241m/\u001b[39m np\u001b[38;5;241m.\u001b[39mabs(initialisation)\u001b[38;5;241m.\u001b[39mmax()\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/spectral.py:332\u001b[0m, in \u001b[0;36mspectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds)\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m L\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m2000000\u001b[39m:\n\u001b[0;32m--> 332\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m \u001b[43mscipy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meigsh\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 333\u001b[0m \u001b[43m \u001b[49m\u001b[43mL\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 334\u001b[0m \u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 335\u001b[0m \u001b[43m \u001b[49m\u001b[43mwhich\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSM\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 336\u001b[0m \u001b[43m \u001b[49m\u001b[43mncv\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_lanczos_vectors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 337\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1e-4\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 338\u001b[0m \u001b[43m \u001b[49m\u001b[43mv0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mL\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 339\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py:1597\u001b[0m, in \u001b[0;36meigsh\u001b[0;34m(A, k, M, sigma, which, v0, ncv, maxiter, tol, return_eigenvectors, Minv, OPinv, mode)\u001b[0m\n\u001b[1;32m 1596\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m issparse(A):\n\u001b[0;32m-> 1597\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use scipy.linalg.eigh for sparse A with \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1598\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk >= N. Use scipy.linalg.eigh(A.toarray()) or\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1599\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m reduce k.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1600\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(A, LinearOperator):\n",
|
||
"\u001b[0;31mTypeError\u001b[0m: Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k.",
|
||
"\nDuring handling of the above exception, another exception occurred:\n",
|
||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[10], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# make a list of all the text_english entries per analysed image from the mydict variable as above\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m topic_model, topic_df, most_frequent_topics \u001b[38;5;241m=\u001b[39m \u001b[43mammico\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mPostprocessText\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43mmydict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmydict\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_topic\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/text.py:224\u001b[0m, in \u001b[0;36mPostprocessText.analyse_topic\u001b[0;34m(self, return_topics)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBERTopic excited with an error - maybe your dataset is too small?\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 224\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtopics, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprobs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtopic_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlist_text_english\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;66;03m# return the topic list\u001b[39;00m\n\u001b[1;32m 226\u001b[0m topic_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtopic_model\u001b[38;5;241m.\u001b[39mget_topic_info()\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/bertopic/_bertopic.py:356\u001b[0m, in \u001b[0;36mBERTopic.fit_transform\u001b[0;34m(self, documents, embeddings, y)\u001b[0m\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mseed_topic_list \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 355\u001b[0m y, embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_guided_topic_modeling(embeddings)\n\u001b[0;32m--> 356\u001b[0m umap_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reduce_dimensionality\u001b[49m\u001b[43m(\u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;66;03m# Cluster reduced embeddings\u001b[39;00m\n\u001b[1;32m 359\u001b[0m documents, probabilities \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cluster_embeddings(umap_embeddings, documents, y\u001b[38;5;241m=\u001b[39my)\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/bertopic/_bertopic.py:2872\u001b[0m, in \u001b[0;36mBERTopic._reduce_dimensionality\u001b[0;34m(self, embeddings, y, partial_fit)\u001b[0m\n\u001b[1;32m 2869\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 2870\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe dimensionality reduction algorithm did not contain the `y` parameter and\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2871\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m therefore the `y` parameter was not used\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mumap_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2874\u001b[0m umap_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mumap_model\u001b[38;5;241m.\u001b[39mtransform(embeddings)\n\u001b[1;32m 2875\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReduced dimensionality\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2684\u001b[0m, in \u001b[0;36mUMAP.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 2681\u001b[0m \u001b[38;5;28mprint\u001b[39m(ts(), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mConstruct embedding\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2683\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransform_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 2684\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_, aux_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_embed_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raw_data\u001b[49m\u001b[43m[\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# JH why raw data?\u001b[39;49;00m\n\u001b[1;32m 2689\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2690\u001b[0m \u001b[38;5;66;03m# Assign any points that are fully disconnected from our manifold(s) to have embedding\u001b[39;00m\n\u001b[1;32m 2691\u001b[0m \u001b[38;5;66;03m# coordinates of np.nan. These will be filtered by our plotting functions automatically.\u001b[39;00m\n\u001b[1;32m 2692\u001b[0m \u001b[38;5;66;03m# They also prevent users from being deceived a distance query to one of these points.\u001b[39;00m\n\u001b[1;32m 2693\u001b[0m \u001b[38;5;66;03m# Might be worth moving this into simplicial_set_embedding or _fit_embed_data\u001b[39;00m\n\u001b[1;32m 2694\u001b[0m disconnected_vertices \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgraph_\u001b[38;5;241m.\u001b[39msum(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m))\u001b[38;5;241m.\u001b[39mflatten() \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2717\u001b[0m, in \u001b[0;36mUMAP._fit_embed_data\u001b[0;34m(self, X, n_epochs, init, random_state)\u001b[0m\n\u001b[1;32m 2713\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_fit_embed_data\u001b[39m(\u001b[38;5;28mself\u001b[39m, X, n_epochs, init, random_state):\n\u001b[1;32m 2714\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"A method wrapper for simplicial_set_embedding that can be\u001b[39;00m\n\u001b[1;32m 2715\u001b[0m \u001b[38;5;124;03m replaced by subclasses.\u001b[39;00m\n\u001b[1;32m 2716\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 2717\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msimplicial_set_embedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2718\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2719\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgraph_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2720\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2721\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initial_alpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2722\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_a\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2723\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_b\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2724\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepulsion_strength\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2725\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnegative_sample_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2726\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2727\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2728\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2729\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_input_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2730\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2731\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdensmap\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2732\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_densmap_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2733\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_dens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2734\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2735\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2736\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_metric\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meuclidean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43ml2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2737\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2738\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2739\u001b[0m \u001b[43m \u001b[49m\u001b[43mtqdm_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtqdm_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2740\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:1078\u001b[0m, in \u001b[0;36msimplicial_set_embedding\u001b[0;34m(data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric, output_metric_kwds, euclidean_output, parallel, verbose, tqdm_kwds)\u001b[0m\n\u001b[1;32m 1073\u001b[0m embedding \u001b[38;5;241m=\u001b[39m random_state\u001b[38;5;241m.\u001b[39muniform(\n\u001b[1;32m 1074\u001b[0m low\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m10.0\u001b[39m, high\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10.0\u001b[39m, size\u001b[38;5;241m=\u001b[39m(graph\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], n_components)\n\u001b[1;32m 1075\u001b[0m )\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39mfloat32)\n\u001b[1;32m 1076\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(init, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m init \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspectral\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1077\u001b[0m \u001b[38;5;66;03m# We add a little noise to avoid local minima for optimization to come\u001b[39;00m\n\u001b[0;32m-> 1078\u001b[0m initialisation \u001b[38;5;241m=\u001b[39m \u001b[43mspectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1079\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1080\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1081\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1082\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1083\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1084\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1085\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1086\u001b[0m expansion \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10.0\u001b[39m \u001b[38;5;241m/\u001b[39m np\u001b[38;5;241m.\u001b[39mabs(initialisation)\u001b[38;5;241m.\u001b[39mmax()\n\u001b[1;32m 1087\u001b[0m embedding \u001b[38;5;241m=\u001b[39m (initialisation \u001b[38;5;241m*\u001b[39m expansion)\u001b[38;5;241m.\u001b[39mastype(\n\u001b[1;32m 1088\u001b[0m np\u001b[38;5;241m.\u001b[39mfloat32\n\u001b[1;32m 1089\u001b[0m ) \u001b[38;5;241m+\u001b[39m random_state\u001b[38;5;241m.\u001b[39mnormal(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1092\u001b[0m np\u001b[38;5;241m.\u001b[39mfloat32\n\u001b[1;32m 1093\u001b[0m )\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/spectral.py:332\u001b[0m, in \u001b[0;36mspectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 331\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m L\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m2000000\u001b[39m:\n\u001b[0;32m--> 332\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m \u001b[43mscipy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meigsh\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 333\u001b[0m \u001b[43m \u001b[49m\u001b[43mL\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 334\u001b[0m \u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 335\u001b[0m \u001b[43m \u001b[49m\u001b[43mwhich\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSM\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 336\u001b[0m \u001b[43m \u001b[49m\u001b[43mncv\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_lanczos_vectors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 337\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1e-4\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 338\u001b[0m \u001b[43m \u001b[49m\u001b[43mv0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mL\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 339\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 342\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m scipy\u001b[38;5;241m.\u001b[39msparse\u001b[38;5;241m.\u001b[39mlinalg\u001b[38;5;241m.\u001b[39mlobpcg(\n\u001b[1;32m 343\u001b[0m L, random_state\u001b[38;5;241m.\u001b[39mnormal(size\u001b[38;5;241m=\u001b[39m(L\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], k)), largest\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, tol\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1e-8\u001b[39m\n\u001b[1;32m 344\u001b[0m )\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py:1597\u001b[0m, in \u001b[0;36meigsh\u001b[0;34m(A, k, M, sigma, which, v0, ncv, maxiter, tol, return_eigenvectors, Minv, OPinv, mode)\u001b[0m\n\u001b[1;32m 1592\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk >= N for N * N square matrix. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1593\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttempting to use scipy.linalg.eigh instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 1594\u001b[0m \u001b[38;5;167;01mRuntimeWarning\u001b[39;00m)\n\u001b[1;32m 1596\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m issparse(A):\n\u001b[0;32m-> 1597\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use scipy.linalg.eigh for sparse A with \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1598\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk >= N. Use scipy.linalg.eigh(A.toarray()) or\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1599\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m reduce k.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1600\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(A, LinearOperator):\n\u001b[1;32m 1601\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use scipy.linalg.eigh for LinearOperator \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1602\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mA with k >= N.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||
"\u001b[0;31mTypeError\u001b[0m: Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k."
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# make a list of all the text_english entries per analysed image from the mydict variable as above\n",
|
||
"topic_model, topic_df, most_frequent_topics = ammico.text.PostprocessText(\n",
|
||
" mydict=mydict\n",
|
||
").analyse_topic()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "95667342",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Option 2: Read in a csv\n",
|
||
"Not to analyse too many images on google Cloud Vision, use the csv output to obtain the text (when rerunning already analysed images)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "5530e436",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:36.628797Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:36.627981Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:38.703683Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:38.702187Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Reading data from df.\n"
|
||
]
|
||
},
|
||
{
|
||
"ename": "TypeError",
|
||
"evalue": "Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k.",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/bertopic/_bertopic.py:2868\u001b[0m, in \u001b[0;36mBERTopic._reduce_dimensionality\u001b[0;34m(self, embeddings, y, partial_fit)\u001b[0m\n\u001b[1;32m 2867\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 2868\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mumap_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2869\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2684\u001b[0m, in \u001b[0;36mUMAP.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransform_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 2684\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_, aux_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_embed_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raw_data\u001b[49m\u001b[43m[\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# JH why raw data?\u001b[39;49;00m\n\u001b[1;32m 2689\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2690\u001b[0m \u001b[38;5;66;03m# Assign any points that are fully disconnected from our manifold(s) to have embedding\u001b[39;00m\n\u001b[1;32m 2691\u001b[0m \u001b[38;5;66;03m# coordinates of np.nan. These will be filtered by our plotting functions automatically.\u001b[39;00m\n\u001b[1;32m 2692\u001b[0m \u001b[38;5;66;03m# They also prevent users from being deceived a distance query to one of these points.\u001b[39;00m\n\u001b[1;32m 2693\u001b[0m \u001b[38;5;66;03m# Might be worth moving this into simplicial_set_embedding or _fit_embed_data\u001b[39;00m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2717\u001b[0m, in \u001b[0;36mUMAP._fit_embed_data\u001b[0;34m(self, X, n_epochs, init, random_state)\u001b[0m\n\u001b[1;32m 2714\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"A method wrapper for simplicial_set_embedding that can be\u001b[39;00m\n\u001b[1;32m 2715\u001b[0m \u001b[38;5;124;03mreplaced by subclasses.\u001b[39;00m\n\u001b[1;32m 2716\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m-> 2717\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msimplicial_set_embedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2718\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2719\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgraph_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2720\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2721\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initial_alpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2722\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_a\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2723\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_b\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2724\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepulsion_strength\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2725\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnegative_sample_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2726\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2727\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2728\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2729\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_input_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2730\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2731\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdensmap\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2732\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_densmap_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2733\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_dens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2734\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2735\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2736\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_metric\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meuclidean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43ml2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2737\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2738\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2739\u001b[0m \u001b[43m \u001b[49m\u001b[43mtqdm_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtqdm_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2740\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:1078\u001b[0m, in \u001b[0;36msimplicial_set_embedding\u001b[0;34m(data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric, output_metric_kwds, euclidean_output, parallel, verbose, tqdm_kwds)\u001b[0m\n\u001b[1;32m 1076\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(init, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m init \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspectral\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1077\u001b[0m \u001b[38;5;66;03m# We add a little noise to avoid local minima for optimization to come\u001b[39;00m\n\u001b[0;32m-> 1078\u001b[0m initialisation \u001b[38;5;241m=\u001b[39m \u001b[43mspectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1079\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1080\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1081\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1082\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1083\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1084\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1085\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1086\u001b[0m expansion \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10.0\u001b[39m \u001b[38;5;241m/\u001b[39m np\u001b[38;5;241m.\u001b[39mabs(initialisation)\u001b[38;5;241m.\u001b[39mmax()\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/spectral.py:332\u001b[0m, in \u001b[0;36mspectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds)\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m L\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m2000000\u001b[39m:\n\u001b[0;32m--> 332\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m \u001b[43mscipy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meigsh\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 333\u001b[0m \u001b[43m \u001b[49m\u001b[43mL\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 334\u001b[0m \u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 335\u001b[0m \u001b[43m \u001b[49m\u001b[43mwhich\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSM\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 336\u001b[0m \u001b[43m \u001b[49m\u001b[43mncv\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_lanczos_vectors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 337\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1e-4\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 338\u001b[0m \u001b[43m \u001b[49m\u001b[43mv0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mL\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 339\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py:1597\u001b[0m, in \u001b[0;36meigsh\u001b[0;34m(A, k, M, sigma, which, v0, ncv, maxiter, tol, return_eigenvectors, Minv, OPinv, mode)\u001b[0m\n\u001b[1;32m 1596\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m issparse(A):\n\u001b[0;32m-> 1597\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use scipy.linalg.eigh for sparse A with \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1598\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk >= N. Use scipy.linalg.eigh(A.toarray()) or\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1599\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m reduce k.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1600\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(A, LinearOperator):\n",
|
||
"\u001b[0;31mTypeError\u001b[0m: Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k.",
|
||
"\nDuring handling of the above exception, another exception occurred:\n",
|
||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[11], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m input_file_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata_out.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 2\u001b[0m topic_model, topic_df, most_frequent_topics \u001b[38;5;241m=\u001b[39m \u001b[43mammico\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mPostprocessText\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_csv\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcsv_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_file_path\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_topic\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreturn_topics\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m~/work/AMMICO/AMMICO/ammico/text.py:224\u001b[0m, in \u001b[0;36mPostprocessText.analyse_topic\u001b[0;34m(self, return_topics)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mBERTopic excited with an error - maybe your dataset is too small?\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 224\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtopics, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprobs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtopic_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlist_text_english\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;66;03m# return the topic list\u001b[39;00m\n\u001b[1;32m 226\u001b[0m topic_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtopic_model\u001b[38;5;241m.\u001b[39mget_topic_info()\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/bertopic/_bertopic.py:356\u001b[0m, in \u001b[0;36mBERTopic.fit_transform\u001b[0;34m(self, documents, embeddings, y)\u001b[0m\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mseed_topic_list \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_model \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 355\u001b[0m y, embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_guided_topic_modeling(embeddings)\n\u001b[0;32m--> 356\u001b[0m umap_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reduce_dimensionality\u001b[49m\u001b[43m(\u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;66;03m# Cluster reduced embeddings\u001b[39;00m\n\u001b[1;32m 359\u001b[0m documents, probabilities \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cluster_embeddings(umap_embeddings, documents, y\u001b[38;5;241m=\u001b[39my)\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/bertopic/_bertopic.py:2872\u001b[0m, in \u001b[0;36mBERTopic._reduce_dimensionality\u001b[0;34m(self, embeddings, y, partial_fit)\u001b[0m\n\u001b[1;32m 2869\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 2870\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe dimensionality reduction algorithm did not contain the `y` parameter and\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2871\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m therefore the `y` parameter was not used\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mumap_model\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2874\u001b[0m umap_embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mumap_model\u001b[38;5;241m.\u001b[39mtransform(embeddings)\n\u001b[1;32m 2875\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReduced dimensionality\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2684\u001b[0m, in \u001b[0;36mUMAP.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 2681\u001b[0m \u001b[38;5;28mprint\u001b[39m(ts(), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mConstruct embedding\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2683\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtransform_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124membedding\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 2684\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membedding_, aux_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_embed_data\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2685\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raw_data\u001b[49m\u001b[43m[\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2686\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2687\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2688\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# JH why raw data?\u001b[39;49;00m\n\u001b[1;32m 2689\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2690\u001b[0m \u001b[38;5;66;03m# Assign any points that are fully disconnected from our manifold(s) to have embedding\u001b[39;00m\n\u001b[1;32m 2691\u001b[0m \u001b[38;5;66;03m# coordinates of np.nan. These will be filtered by our plotting functions automatically.\u001b[39;00m\n\u001b[1;32m 2692\u001b[0m \u001b[38;5;66;03m# They also prevent users from being deceived a distance query to one of these points.\u001b[39;00m\n\u001b[1;32m 2693\u001b[0m \u001b[38;5;66;03m# Might be worth moving this into simplicial_set_embedding or _fit_embed_data\u001b[39;00m\n\u001b[1;32m 2694\u001b[0m disconnected_vertices \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marray(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgraph_\u001b[38;5;241m.\u001b[39msum(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m))\u001b[38;5;241m.\u001b[39mflatten() \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:2717\u001b[0m, in \u001b[0;36mUMAP._fit_embed_data\u001b[0;34m(self, X, n_epochs, init, random_state)\u001b[0m\n\u001b[1;32m 2713\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_fit_embed_data\u001b[39m(\u001b[38;5;28mself\u001b[39m, X, n_epochs, init, random_state):\n\u001b[1;32m 2714\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"A method wrapper for simplicial_set_embedding that can be\u001b[39;00m\n\u001b[1;32m 2715\u001b[0m \u001b[38;5;124;03m replaced by subclasses.\u001b[39;00m\n\u001b[1;32m 2716\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 2717\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msimplicial_set_embedding\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2718\u001b[0m \u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2719\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgraph_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2720\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2721\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initial_alpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2722\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_a\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2723\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_b\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2724\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepulsion_strength\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2725\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnegative_sample_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2726\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_epochs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2727\u001b[0m \u001b[43m \u001b[49m\u001b[43minit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2728\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2729\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_input_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2730\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2731\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdensmap\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2732\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_densmap_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2733\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_dens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2734\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_distance_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2735\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_output_metric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2736\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_metric\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43meuclidean\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43ml2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2737\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom_state\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 2738\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2739\u001b[0m \u001b[43m \u001b[49m\u001b[43mtqdm_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtqdm_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2740\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/umap_.py:1078\u001b[0m, in \u001b[0;36msimplicial_set_embedding\u001b[0;34m(data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric, output_metric_kwds, euclidean_output, parallel, verbose, tqdm_kwds)\u001b[0m\n\u001b[1;32m 1073\u001b[0m embedding \u001b[38;5;241m=\u001b[39m random_state\u001b[38;5;241m.\u001b[39muniform(\n\u001b[1;32m 1074\u001b[0m low\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m10.0\u001b[39m, high\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m10.0\u001b[39m, size\u001b[38;5;241m=\u001b[39m(graph\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], n_components)\n\u001b[1;32m 1075\u001b[0m )\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39mfloat32)\n\u001b[1;32m 1076\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(init, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m init \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspectral\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1077\u001b[0m \u001b[38;5;66;03m# We add a little noise to avoid local minima for optimization to come\u001b[39;00m\n\u001b[0;32m-> 1078\u001b[0m initialisation \u001b[38;5;241m=\u001b[39m \u001b[43mspectral_layout\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1079\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1080\u001b[0m \u001b[43m \u001b[49m\u001b[43mgraph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1081\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_components\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1082\u001b[0m \u001b[43m \u001b[49m\u001b[43mrandom_state\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1083\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1084\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric_kwds\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetric_kwds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1085\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1086\u001b[0m expansion \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m10.0\u001b[39m \u001b[38;5;241m/\u001b[39m np\u001b[38;5;241m.\u001b[39mabs(initialisation)\u001b[38;5;241m.\u001b[39mmax()\n\u001b[1;32m 1087\u001b[0m embedding \u001b[38;5;241m=\u001b[39m (initialisation \u001b[38;5;241m*\u001b[39m expansion)\u001b[38;5;241m.\u001b[39mastype(\n\u001b[1;32m 1088\u001b[0m np\u001b[38;5;241m.\u001b[39mfloat32\n\u001b[1;32m 1089\u001b[0m ) \u001b[38;5;241m+\u001b[39m random_state\u001b[38;5;241m.\u001b[39mnormal(\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1092\u001b[0m np\u001b[38;5;241m.\u001b[39mfloat32\n\u001b[1;32m 1093\u001b[0m )\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/umap/spectral.py:332\u001b[0m, in \u001b[0;36mspectral_layout\u001b[0;34m(data, graph, dim, random_state, metric, metric_kwds)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 331\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m L\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m2000000\u001b[39m:\n\u001b[0;32m--> 332\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m \u001b[43mscipy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msparse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinalg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43meigsh\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 333\u001b[0m \u001b[43m \u001b[49m\u001b[43mL\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 334\u001b[0m \u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 335\u001b[0m \u001b[43m \u001b[49m\u001b[43mwhich\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSM\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 336\u001b[0m \u001b[43m \u001b[49m\u001b[43mncv\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_lanczos_vectors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 337\u001b[0m \u001b[43m \u001b[49m\u001b[43mtol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1e-4\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 338\u001b[0m \u001b[43m \u001b[49m\u001b[43mv0\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mones\u001b[49m\u001b[43m(\u001b[49m\u001b[43mL\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 339\u001b[0m \u001b[43m \u001b[49m\u001b[43mmaxiter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 342\u001b[0m eigenvalues, eigenvectors \u001b[38;5;241m=\u001b[39m scipy\u001b[38;5;241m.\u001b[39msparse\u001b[38;5;241m.\u001b[39mlinalg\u001b[38;5;241m.\u001b[39mlobpcg(\n\u001b[1;32m 343\u001b[0m L, random_state\u001b[38;5;241m.\u001b[39mnormal(size\u001b[38;5;241m=\u001b[39m(L\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], k)), largest\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, tol\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1e-8\u001b[39m\n\u001b[1;32m 344\u001b[0m )\n",
|
||
"File \u001b[0;32m/opt/hostedtoolcache/Python/3.9.16/x64/lib/python3.9/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py:1597\u001b[0m, in \u001b[0;36meigsh\u001b[0;34m(A, k, M, sigma, which, v0, ncv, maxiter, tol, return_eigenvectors, Minv, OPinv, mode)\u001b[0m\n\u001b[1;32m 1592\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk >= N for N * N square matrix. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1593\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttempting to use scipy.linalg.eigh instead.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 1594\u001b[0m \u001b[38;5;167;01mRuntimeWarning\u001b[39;00m)\n\u001b[1;32m 1596\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m issparse(A):\n\u001b[0;32m-> 1597\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use scipy.linalg.eigh for sparse A with \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1598\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mk >= N. Use scipy.linalg.eigh(A.toarray()) or\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1599\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m reduce k.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1600\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(A, LinearOperator):\n\u001b[1;32m 1601\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot use scipy.linalg.eigh for LinearOperator \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1602\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mA with k >= N.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||
"\u001b[0;31mTypeError\u001b[0m: Cannot use scipy.linalg.eigh for sparse A with k >= N. Use scipy.linalg.eigh(A.toarray()) or reduce k."
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"input_file_path = \"data_out.csv\"\n",
|
||
"topic_model, topic_df, most_frequent_topics = ammico.text.PostprocessText(\n",
|
||
" use_csv=True, csv_path=input_file_path\n",
|
||
").analyse_topic(return_topics=10)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "0b6ef6d7",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Access frequent topics\n",
|
||
"A topic of `-1` stands for an outlier and should be ignored. Topic count is the number of occurence of that topic. The output is structured from most frequent to least frequent topic."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "43288cda-61bb-4ff1-a209-dcfcc4916b1f",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:38.708891Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:38.708305Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:38.754276Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:38.753275Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"ename": "NameError",
|
||
"evalue": "name 'topic_df' is not defined",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mtopic_df\u001b[49m)\n",
|
||
"\u001b[0;31mNameError\u001b[0m: name 'topic_df' is not defined"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(topic_df)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "b3316770",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Get information for specific topic\n",
|
||
"The most frequent topics can be accessed through `most_frequent_topics` with the most occuring topics first in the list."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "db14fe03",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:38.759116Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:38.758441Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:38.803768Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:38.802592Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"ename": "NameError",
|
||
"evalue": "name 'most_frequent_topics' is not defined",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[13], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m topic \u001b[38;5;129;01min\u001b[39;00m \u001b[43mmost_frequent_topics\u001b[49m:\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTopic:\u001b[39m\u001b[38;5;124m\"\u001b[39m, topic)\n",
|
||
"\u001b[0;31mNameError\u001b[0m: name 'most_frequent_topics' is not defined"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for topic in most_frequent_topics:\n",
|
||
" print(\"Topic:\", topic)"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "d10f701e",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Topic visualization\n",
|
||
"The topics can also be visualized. Careful: This only works if there is sufficient data (quantity and quality)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"id": "2331afe6",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:38.808984Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:38.808301Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:38.853597Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:38.852555Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"ename": "NameError",
|
||
"evalue": "name 'topic_model' is not defined",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtopic_model\u001b[49m\u001b[38;5;241m.\u001b[39mvisualize_topics()\n",
|
||
"\u001b[0;31mNameError\u001b[0m: name 'topic_model' is not defined"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"topic_model.visualize_topics()"
|
||
]
|
||
},
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "f4eaf353",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Save the model\n",
|
||
"The model can be saved for future use."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"id": "e5e8377c",
|
||
"metadata": {
|
||
"execution": {
|
||
"iopub.execute_input": "2023-06-01T12:20:38.858160Z",
|
||
"iopub.status.busy": "2023-06-01T12:20:38.857414Z",
|
||
"iopub.status.idle": "2023-06-01T12:20:38.906789Z",
|
||
"shell.execute_reply": "2023-06-01T12:20:38.905627Z"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"ename": "NameError",
|
||
"evalue": "name 'topic_model' is not defined",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||
"Cell \u001b[0;32mIn[15], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtopic_model\u001b[49m\u001b[38;5;241m.\u001b[39msave(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmisinfo_posts\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||
"\u001b[0;31mNameError\u001b[0m: name 'topic_model' is not defined"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"topic_model.save(\"misinfo_posts\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "7c94edb9",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.16"
|
||
},
|
||
"vscode": {
|
||
"interpreter": {
|
||
"hash": "da98320027a74839c7141b42ef24e2d47d628ba1f51115c13da5d8b45a372ec2"
|
||
}
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"state": {
|
||
"00a6a15a6db64ba5ad8e6ea5d68a161e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"02d58249c78d48fb9a7cda895b131796": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_f763769b415643f7887c39c3be555b37",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_b355d5cc6cf841749d2bd3a3f740898f",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading pytorch_model.bin: 100%"
|
||
}
|
||
},
|
||
"03aa69a453dc4240bd714b25fef0b465": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"0593f9bb56c443e08c097e0d19ddea8d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"065accc8d82c4b04a2303d59f104141a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"088e056fa43b41a888c34116f2f80654": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0a5d77035c7f455c9f22d61e4291cff1": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_d156c532b619448babf6cf9855daf695",
|
||
"max": 26.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_6dbe8c3b0c734c58bb17a56c6a73781d",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 26.0
|
||
}
|
||
},
|
||
"0d55b635fe6c4f9da15aa540eb3a26b5": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"0efec019c77a48a585a0fa9a8272b914": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"104cca2a33784673b1dce2ea613ddb59": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_5c309e93620e4ec2a93bb752658df75b",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_602feef554ad47aa8704961f50dc3a23",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)okenizer_config.json: 100%"
|
||
}
|
||
},
|
||
"11e198ce5add41e3a4d97cb8be13e9a5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_bb75818228d1443b89b81cb1d326b45f",
|
||
"max": 1222317369.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_ba1a5dbd0e5044ddb647154f8c8fec29",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 1222317369.0
|
||
}
|
||
},
|
||
"1222eb19594f4f4990a76ed9fed1d076": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_a14729323b714a3eab722d6999924adb",
|
||
"IPY_MODEL_baf3799c253f4c7fb472dd1485af9a35",
|
||
"IPY_MODEL_ca1c624016c144c288a6e67c7ced98c6"
|
||
],
|
||
"layout": "IPY_MODEL_3bc73b5d22b949219cf6b901a566c25e",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"1237eb15700d44c28e6b5664a7853f4c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_bb61d578d2854a219f29568dbd0b8a86",
|
||
"IPY_MODEL_0a5d77035c7f455c9f22d61e4291cff1",
|
||
"IPY_MODEL_30b631fe9d9f4dca95bbce5d9cc5e36a"
|
||
],
|
||
"layout": "IPY_MODEL_99c7ae281237452b818be6069919456b",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"12bf86d1f3a44a78b8b59c71993f5fd1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"15178d1051764f9d91769c242f2eea61": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_088e056fa43b41a888c34116f2f80654",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_2e422a07482e45ab80a8ef871b04b002",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)/f2482bf/config.json: 100%"
|
||
}
|
||
},
|
||
"1a32ac69d82b4bd1bd62600359451242": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1a5d5f7b4e554251aebd28517323d5e8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_fefba1812713495aac5beb2fb9f9f339",
|
||
"max": 998.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_7eb57320d1f949c69dfb0a248c072abb",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 998.0
|
||
}
|
||
},
|
||
"1a9b89159cfb4f2f928dcce3fdeba48b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1c7f8f2d3fbc4c22a60fa7f736ae791e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1ed40f03317240f8a7ee0b41706c2586": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_0d55b635fe6c4f9da15aa540eb3a26b5",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_03aa69a453dc4240bd714b25fef0b465",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading pytorch_model.bin: 100%"
|
||
}
|
||
},
|
||
"1f7d6dd8674b4e7b9b3aaf10bafc5a1f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"28e45fcb4a4e4b318ae6228f963541da": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2a00dd7441bf49c886ddd2980ef5a60d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_5efa0dcfc1a44083b5f8346c2f82f422",
|
||
"IPY_MODEL_6da5c5bd7a9540b9b9a4e83aedc35860",
|
||
"IPY_MODEL_af605db70dee47ea96b198b37ad377de"
|
||
],
|
||
"layout": "IPY_MODEL_c26fc026064b4c2abc9571993039664b",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"2a088d4f6bed4301b8d7366b321b53b9": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"2ae833005e9f45759252d515c9c2769c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"2c02bfaf09ff4ac89f974ae3b456cfe0": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_349cb73eea1f4a26a7891072d4bd811a",
|
||
"max": 213450.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_ec0a14914e93449c94c22c2f8746b78a",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 213450.0
|
||
}
|
||
},
|
||
"2c55e836859c4f8d81e2e648e02201bb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_ef04a6cf58cd48a9a51069f6ecaa9f97",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_2a088d4f6bed4301b8d7366b321b53b9",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)ve/f2482bf/vocab.txt: 100%"
|
||
}
|
||
},
|
||
"2e422a07482e45ab80a8ef871b04b002": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"30b631fe9d9f4dca95bbce5d9cc5e36a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_0593f9bb56c443e08c097e0d19ddea8d",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_5374527f423b4c94b44328e2547a9c71",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 26.0/26.0 [00:00<00:00, 1.28kB/s]"
|
||
}
|
||
},
|
||
"3376259c3c3f42229158af3835496b1b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"3401384d35e344359fd40c47fec60720": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_104cca2a33784673b1dce2ea613ddb59",
|
||
"IPY_MODEL_52637eefe2a84eb9a31281d43267b540",
|
||
"IPY_MODEL_411092c51c73413cbbec852cbbf6971d"
|
||
],
|
||
"layout": "IPY_MODEL_b461f7b4ba874f39875d1f9531933790",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"349cb73eea1f4a26a7891072d4bd811a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"34d0a8601e994d9a8f4fb7a21e981439": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"35ca0ba2a9494d2aac6a5b1b504a9b3a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_74fb03e5726d47beafde66fb680a5658",
|
||
"max": 48.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_60be1b0c6e8c43c58be3f7121cf9a40b",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 48.0
|
||
}
|
||
},
|
||
"364dc65011694596a4c8228e36f3057e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"38317a13a17541bf868a2990680fffc4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_85e1cf913a0c4b7e99d19ffde7d869dc",
|
||
"max": 1802.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_791f2753afca47ba8fb54279593ca714",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 1802.0
|
||
}
|
||
},
|
||
"3bc73b5d22b949219cf6b901a566c25e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"3cd00f535df4400aaea91e49c87b73d4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_9bd6e78e93474e82928808438a2db0ed",
|
||
"IPY_MODEL_38317a13a17541bf868a2990680fffc4",
|
||
"IPY_MODEL_e1754caa443742a3aac2ff94558410d8"
|
||
],
|
||
"layout": "IPY_MODEL_dffc200e4e43497bb7a6df6247823489",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"3cd320c8c8d74f99b5e95f27795f689f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"3d7180a293e441289e8820ad4ab970bb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"3ea45f6a008b4d2dbe372fa5a8d320e0": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_02d58249c78d48fb9a7cda895b131796",
|
||
"IPY_MODEL_ad0122b247364338a005c7edd9835f42",
|
||
"IPY_MODEL_894c0e93095541898b7746f52f002dcf"
|
||
],
|
||
"layout": "IPY_MODEL_806444e780034303b1edd77980e96bf3",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"411092c51c73413cbbec852cbbf6971d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_d01db3ece09c429c9f3cc0ce272408ba",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_73d81a69772e48d2951fb6d75fa83aa6",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 60.0/60.0 [00:00<00:00, 3.07kB/s]"
|
||
}
|
||
},
|
||
"42265db5a13c4366bfe1e741d3a4b611": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_12bf86d1f3a44a78b8b59c71993f5fd1",
|
||
"max": 231508.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_00a6a15a6db64ba5ad8e6ea5d68a161e",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 231508.0
|
||
}
|
||
},
|
||
"4438c030f7ca47089927950731491439": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"44a66ef55c0449d1ac98ea7e0de1297d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"451a104fc05a4496b3414b2d16955017": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"4bb1d288942047f9a41838fcb2c33138": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"52637eefe2a84eb9a31281d43267b540": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_1a9b89159cfb4f2f928dcce3fdeba48b",
|
||
"max": 60.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_557d1a73613748a1bd009ac731df9b0f",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 60.0
|
||
}
|
||
},
|
||
"5374527f423b4c94b44328e2547a9c71": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"557d1a73613748a1bd009ac731df9b0f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"5688ca8c68a74ce0b78c3fa874517306": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"594eb95c426b45dbb8a5ae42fabeb4d4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_75cb2e229c614058acdbf334c735bb6f",
|
||
"IPY_MODEL_35ca0ba2a9494d2aac6a5b1b504a9b3a",
|
||
"IPY_MODEL_87c4ae7c1fd8487eaed9f46e8617bde5"
|
||
],
|
||
"layout": "IPY_MODEL_4bb1d288942047f9a41838fcb2c33138",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"5c309e93620e4ec2a93bb752658df75b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"5cc0dfc1ffce4aa4a5edbc8fe93b77ee": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"5efa0dcfc1a44083b5f8346c2f82f422": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_7e40f3318b754db8ad9d221f9af205cb",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_7cf67b3178344622a79efac227508afe",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)/af0f99b/config.json: 100%"
|
||
}
|
||
},
|
||
"5f75fd5d20c14b77bdd5f7ce0cd55dac": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"602feef554ad47aa8704961f50dc3a23": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"60be1b0c6e8c43c58be3f7121cf9a40b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"68949d4de2484feba12e4d6510ce8c4d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_d9f9717d86cd4e0f903cc436e7d7c557",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_b2b3106d0cae49cc98588afa1ff13971",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)ve/af0f99b/vocab.txt: 100%"
|
||
}
|
||
},
|
||
"6da5c5bd7a9540b9b9a4e83aedc35860": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_948d07c967fc4a198b15cace5607066f",
|
||
"max": 629.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_efedc9cc304d47aa89f2f6d289018c74",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 629.0
|
||
}
|
||
},
|
||
"6dbe8c3b0c734c58bb17a56c6a73781d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"6f91334aa7224a57bf720c92c04ca352": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"6faa7173b9024d39b87aa600b34693c6": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"73d81a69772e48d2951fb6d75fa83aa6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"74c6468ef49d435587afd36ef831756d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_6f91334aa7224a57bf720c92c04ca352",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_0efec019c77a48a585a0fa9a8272b914",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 213k/213k [00:00<00:00, 3.33MB/s]"
|
||
}
|
||
},
|
||
"74fb03e5726d47beafde66fb680a5658": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"75296446be774393873744a25781f00d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"75cb2e229c614058acdbf334c735bb6f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_fdfef5d1638947208e546570ef701912",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_ad7664d0c1c4406895f9073bbcf5ba6a",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)okenizer_config.json: 100%"
|
||
}
|
||
},
|
||
"791f2753afca47ba8fb54279593ca714": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"7a42fff30ecf452281edba0c03cb9568": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"7cf67b3178344622a79efac227508afe": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"7d7b6fd66bfb457798461d830303c601": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_44a66ef55c0449d1ac98ea7e0de1297d",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a5c2aa7e4c67457baae3285ff7d31849",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 232k/232k [00:00<00:00, 1.89MB/s]"
|
||
}
|
||
},
|
||
"7e40f3318b754db8ad9d221f9af205cb": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"7eb57320d1f949c69dfb0a248c072abb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"803dc622b70c466098909700840563e7": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"806444e780034303b1edd77980e96bf3": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"85e1cf913a0c4b7e99d19ffde7d869dc": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"86b6875ec3594f2eb786ae91f28e5d26": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"87c4ae7c1fd8487eaed9f46e8617bde5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_5f75fd5d20c14b77bdd5f7ce0cd55dac",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_8fab47ec0e684ce481fcff94e0d6521f",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 48.0/48.0 [00:00<00:00, 2.62kB/s]"
|
||
}
|
||
},
|
||
"894c0e93095541898b7746f52f002dcf": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_1f7d6dd8674b4e7b9b3aaf10bafc5a1f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_df3f8866bce447638defc0098f35d3b7",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 1.33G/1.33G [00:08<00:00, 95.0MB/s]"
|
||
}
|
||
},
|
||
"8c665016552b4e04abde27aac56d4a67": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_3cd320c8c8d74f99b5e95f27795f689f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_a130c67914de40fe8d693a23f1796fc5",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 1.22G/1.22G [00:14<00:00, 88.9MB/s]"
|
||
}
|
||
},
|
||
"8e1c98036d8542d098dfc048e6b2aa73": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_4438c030f7ca47089927950731491439",
|
||
"max": 898822.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_75296446be774393873744a25781f00d",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 898822.0
|
||
}
|
||
},
|
||
"8fab47ec0e684ce481fcff94e0d6521f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"9216a449d75c4574a3a815c576a2c011": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_98af3bee1be54826a3a1fd2192373a48",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_d4891beb949c479c808b78c651cac381",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 268M/268M [00:01<00:00, 206MB/s]"
|
||
}
|
||
},
|
||
"948d07c967fc4a198b15cace5607066f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"953086134ba243758912c612885505e6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"956ce2adabfa4ac18f812f2f75abb444": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_28e45fcb4a4e4b318ae6228f963541da",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_451a104fc05a4496b3414b2d16955017",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 899k/899k [00:00<00:00, 5.12MB/s]"
|
||
}
|
||
},
|
||
"963ac43e5a184f6ead0e72212f948ff4": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"98af3bee1be54826a3a1fd2192373a48": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"99c7ae281237452b818be6069919456b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"9abdbf5b2147498f9db38f1f922e181b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_2c55e836859c4f8d81e2e648e02201bb",
|
||
"IPY_MODEL_2c02bfaf09ff4ac89f974ae3b456cfe0",
|
||
"IPY_MODEL_74c6468ef49d435587afd36ef831756d"
|
||
],
|
||
"layout": "IPY_MODEL_1a32ac69d82b4bd1bd62600359451242",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"9bd6e78e93474e82928808438a2db0ed": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_ebfd57c4ac7f4497a22ff64731789656",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_e866ae4cccd643099e1368023aef7bf6",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)/a4f8f3e/config.json: 100%"
|
||
}
|
||
},
|
||
"9d35db922d7a4a2f8bde2ee496ab61d7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_1ed40f03317240f8a7ee0b41706c2586",
|
||
"IPY_MODEL_11e198ce5add41e3a4d97cb8be13e9a5",
|
||
"IPY_MODEL_8c665016552b4e04abde27aac56d4a67"
|
||
],
|
||
"layout": "IPY_MODEL_5cc0dfc1ffce4aa4a5edbc8fe93b77ee",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"a130c67914de40fe8d693a23f1796fc5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"a13a736ac60d4dd5ac9ec020ca794766": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_803dc622b70c466098909700840563e7",
|
||
"max": 267844284.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_cefb500582744bf4ab4ab68fa22b3d6a",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 267844284.0
|
||
}
|
||
},
|
||
"a14729323b714a3eab722d6999924adb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_b0c922f8e26343b4a769eb456d4dac2e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_d44d2ab9694b4387881c00a98fa030c7",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)e/a4f8f3e/merges.txt: 100%"
|
||
}
|
||
},
|
||
"a5c2aa7e4c67457baae3285ff7d31849": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"a80a050157b2418c8ccb946b0c02c881": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_d4608a48614b4d0ca824ca8d12eac4c6",
|
||
"IPY_MODEL_8e1c98036d8542d098dfc048e6b2aa73",
|
||
"IPY_MODEL_956ce2adabfa4ac18f812f2f75abb444"
|
||
],
|
||
"layout": "IPY_MODEL_364dc65011694596a4c8228e36f3057e",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"ad0122b247364338a005c7edd9835f42": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_f48fde2773204cf393b0118b5e0e90e9",
|
||
"max": 1334448817.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_2ae833005e9f45759252d515c9c2769c",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 1334448817.0
|
||
}
|
||
},
|
||
"ad7664d0c1c4406895f9073bbcf5ba6a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"af605db70dee47ea96b198b37ad377de": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_963ac43e5a184f6ead0e72212f948ff4",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_f928cc5fdd704e1aaef2e30d55c3f7f5",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 629/629 [00:00<00:00, 34.4kB/s]"
|
||
}
|
||
},
|
||
"b0c922f8e26343b4a769eb456d4dac2e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b2b3106d0cae49cc98588afa1ff13971": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"b355d5cc6cf841749d2bd3a3f740898f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"b461f7b4ba874f39875d1f9531933790": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b7d8739aa80c4760bf42e56c92eefd13": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"ba1a5dbd0e5044ddb647154f8c8fec29": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"baf3799c253f4c7fb472dd1485af9a35": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_ea6fc2b4e3f647e9bdef38f0c1d66670",
|
||
"max": 456318.0,
|
||
"min": 0.0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_065accc8d82c4b04a2303d59f104141a",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": 456318.0
|
||
}
|
||
},
|
||
"bb61d578d2854a219f29568dbd0b8a86": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_34d0a8601e994d9a8f4fb7a21e981439",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_b7d8739aa80c4760bf42e56c92eefd13",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)okenizer_config.json: 100%"
|
||
}
|
||
},
|
||
"bb75818228d1443b89b81cb1d326b45f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"c10abd09ba8d4f2e8c170f48542cb5c5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"c26fc026064b4c2abc9571993039664b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"c28e5c392bf14d0abd9855e472151ac7": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ca1c624016c144c288a6e67c7ced98c6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_c28e5c392bf14d0abd9855e472151ac7",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_953086134ba243758912c612885505e6",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 456k/456k [00:00<00:00, 3.75MB/s]"
|
||
}
|
||
},
|
||
"cefb500582744bf4ab4ab68fa22b3d6a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"d01db3ece09c429c9f3cc0ce272408ba": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d156c532b619448babf6cf9855daf695": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d31f8a78dbea4acf87adcb743076f474": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d44d2ab9694b4387881c00a98fa030c7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"d4608a48614b4d0ca824ca8d12eac4c6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_f3549ca80c5642658325719770f1ffcb",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_3d7180a293e441289e8820ad4ab970bb",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading (…)e/a4f8f3e/vocab.json: 100%"
|
||
}
|
||
},
|
||
"d4891beb949c479c808b78c651cac381": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"d6dc3a01fad24aff9997442c9ba22f5b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_e2e2d0a4d1f642718009e8691ef0d349",
|
||
"IPY_MODEL_a13a736ac60d4dd5ac9ec020ca794766",
|
||
"IPY_MODEL_9216a449d75c4574a3a815c576a2c011"
|
||
],
|
||
"layout": "IPY_MODEL_6faa7173b9024d39b87aa600b34693c6",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"d7a73b7d23f14e8abc186f3b4ba9a665": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d9f9717d86cd4e0f903cc436e7d7c557": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"df3f8866bce447638defc0098f35d3b7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"dffc200e4e43497bb7a6df6247823489": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e1754caa443742a3aac2ff94558410d8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_1c7f8f2d3fbc4c22a60fa7f736ae791e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_7a42fff30ecf452281edba0c03cb9568",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 1.80k/1.80k [00:00<00:00, 96.5kB/s]"
|
||
}
|
||
},
|
||
"e2e2d0a4d1f642718009e8691ef0d349": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_d31f8a78dbea4acf87adcb743076f474",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_c10abd09ba8d4f2e8c170f48542cb5c5",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": "Downloading pytorch_model.bin: 100%"
|
||
}
|
||
},
|
||
"e70cfd30e72046788c2a496b3c5511b4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_15178d1051764f9d91769c242f2eea61",
|
||
"IPY_MODEL_1a5d5f7b4e554251aebd28517323d5e8",
|
||
"IPY_MODEL_fc5ca7f0e26a4152a0a3ca34a00d4817"
|
||
],
|
||
"layout": "IPY_MODEL_d7a73b7d23f14e8abc186f3b4ba9a665",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"e866ae4cccd643099e1368023aef7bf6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"ea6fc2b4e3f647e9bdef38f0c1d66670": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ebfd57c4ac7f4497a22ff64731789656": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ec0a14914e93449c94c22c2f8746b78a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"ef04a6cf58cd48a9a51069f6ecaa9f97": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"efedc9cc304d47aa89f2f6d289018c74": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"f3549ca80c5642658325719770f1ffcb": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f48fde2773204cf393b0118b5e0e90e9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f763769b415643f7887c39c3be555b37": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f928cc5fdd704e1aaef2e30d55c3f7f5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "StyleView",
|
||
"background": null,
|
||
"description_width": "",
|
||
"font_size": null,
|
||
"text_color": null
|
||
}
|
||
},
|
||
"fc5ca7f0e26a4152a0a3ca34a00d4817": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_allow_html": false,
|
||
"layout": "IPY_MODEL_86b6875ec3594f2eb786ae91f28e5d26",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_3376259c3c3f42229158af3835496b1b",
|
||
"tabbable": null,
|
||
"tooltip": null,
|
||
"value": " 998/998 [00:00<00:00, 50.9kB/s]"
|
||
}
|
||
},
|
||
"fdfef5d1638947208e546570ef701912": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fe69b86b82ee4c9db319987b8dc2d7a2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_68949d4de2484feba12e4d6510ce8c4d",
|
||
"IPY_MODEL_42265db5a13c4366bfe1e741d3a4b611",
|
||
"IPY_MODEL_7d7b6fd66bfb457798461d830303c601"
|
||
],
|
||
"layout": "IPY_MODEL_5688ca8c68a74ce0b78c3fa874517306",
|
||
"tabbable": null,
|
||
"tooltip": null
|
||
}
|
||
},
|
||
"fefba1812713495aac5beb2fb9f9f339": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "2.0.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "2.0.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "2.0.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border_bottom": null,
|
||
"border_left": null,
|
||
"border_right": null,
|
||
"border_top": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
}
|
||
},
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|