AMMICO/ammico/test/test_summary.py
Petr Andriushchenko 8161164e87
added new models from lavis to ammico summary (#138)
* added new models from LAVIS to ammico summary

* added sequential questions for summary in new models

* fixed initializing dict process in all notebooks

* joining old and new models into one notebook
2023-09-18 13:47:45 +02:00

152 строки
5.0 KiB
Python

import os
import pytest
from torch import device, cuda
from lavis.models import load_model_and_preprocess
import ammico.summary as sm
IMAGES = ["d755771b-225e-432f-802e-fb8dc850fff7.png", "IMG_2746.png"]
SUMMARY_DEVICE = device("cuda" if cuda.is_available() else "cpu")
TEST_KWARGS = {
"run1": {
"name": "blip_caption",
"model_type": "base_coco",
"is_eval": True,
"device": SUMMARY_DEVICE,
},
"run2": {
"name": "blip_caption",
"model_type": "base_coco",
"is_eval": True,
"device": SUMMARY_DEVICE,
},
"run3": {
"name": "blip_caption",
"model_type": "large_coco",
"is_eval": True,
"device": SUMMARY_DEVICE,
},
}
@pytest.fixture
def get_dict(get_path):
mydict = {}
for img in IMAGES:
id_ = os.path.splitext(os.path.basename(img))[0]
mydict[id_] = {"filename": get_path + img}
return mydict
# @pytest.mark.long
def test_analyse_image(get_dict):
reference_results = {
"run1": {
"d755771b-225e-432f-802e-fb8dc850fff7": "a river running through a city next to tall buildings",
"IMG_2746": "a crowd of people standing on top of a tennis court",
},
"run2": {
"d755771b-225e-432f-802e-fb8dc850fff7": "a river running through a city next to tall buildings",
"IMG_2746": "a crowd of people standing on top of a tennis court",
},
"run3": {
"d755771b-225e-432f-802e-fb8dc850fff7": "a river running through a town next to tall buildings",
"IMG_2746": "a crowd of people standing on top of a track",
},
}
# test three different models
for test_run in TEST_KWARGS.keys():
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
**TEST_KWARGS[test_run]
)
# run two different images
for key in get_dict.keys():
get_dict[key] = sm.SummaryDetector(
get_dict[key],
analysis_type="summary",
summary_model=summary_model,
summary_vis_processors=summary_vis_processors,
).analyse_image()
assert len(get_dict) == 2
for key in get_dict.keys():
assert len(get_dict[key]["3_non-deterministic summary"]) == 3
assert (
get_dict[key]["const_image_summary"] == reference_results[test_run][key]
)
cuda.empty_cache()
summary_model = None
summary_vis_processors = None
@pytest.mark.win_skip
def test_analyse_questions(get_dict):
list_of_questions = [
"How many persons on the picture?",
"What happends on the picture?",
]
for key in get_dict:
get_dict[key] = sm.SummaryDetector(
get_dict[key],
analysis_type="questions",
list_of_questions=list_of_questions,
).analyse_image()
assert len(get_dict) == 2
list_of_questions_ans = ["2", "100"]
list_of_questions_ans2 = ["flood", "festival"]
test_answers = []
test_answers2 = []
for key in get_dict.keys():
test_answers.append(get_dict[key][list_of_questions[0]])
test_answers2.append(get_dict[key][list_of_questions[1]])
assert sorted(test_answers) == sorted(list_of_questions_ans)
assert sorted(test_answers2) == sorted(list_of_questions_ans2)
def test_init_summary():
sd = sm.SummaryDetector({}, analysis_type="summary")
assert sd.analysis_type == "summary"
with pytest.raises(ValueError):
sm.SummaryDetector({}, analysis_type="something")
list_of_questions = ["Question 1", "Question 2"]
sd = sm.SummaryDetector({}, list_of_questions=list_of_questions)
assert sd.list_of_questions == list_of_questions
with pytest.raises(ValueError):
sm.SummaryDetector({}, list_of_questions={})
with pytest.raises(ValueError):
sm.SummaryDetector({}, list_of_questions=[None])
with pytest.raises(ValueError):
sm.SummaryDetector({}, list_of_questions=[0.1])
@pytest.mark.long
def test_advanced_init_summary():
sd = sm.SummaryDetector({})
assert sd.summary_model
assert sd.summary_vis_processors
sd = sm.SummaryDetector({}, model_type="large")
assert sd.summary_model
assert sd.summary_vis_processors
with pytest.raises(ValueError):
sm.SummaryDetector({}, model_type="bla")
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device="cpu",
)
sd = sm.SummaryDetector(
{},
summary_vqa_model=summary_vqa_model,
summary_vqa_vis_processors=summary_vqa_vis_processors,
summary_vqa_txt_processors=summary_vqa_txt_processors,
)
assert sd.summary_vqa_model
assert sd.summary_vqa_vis_processors
assert sd.summary_vqa_txt_processors