зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
238 строки
6.1 KiB
Plaintext
238 строки
6.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "d2c4d40d-8aca-4024-8d19-a65c4efe825d",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Facial Expression recognition with DeepFace"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "51f8888b-d1a3-4b85-a596-95c0993fa192",
|
|
"metadata": {},
|
|
"source": [
|
|
"Facial expressions can be detected using [DeepFace](https://github.com/serengil/deepface) and [RetinaFace](https://github.com/serengil/retinaface).\n",
|
|
"\n",
|
|
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
|
|
"\n",
|
|
"After that, we can import `ammico` and read in the files given a folder path."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "50c1c1c7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# if running on google colab\n",
|
|
"# flake8-noqa-cell\n",
|
|
"import os\n",
|
|
"\n",
|
|
"if \"google.colab\" in str(get_ipython()):\n",
|
|
" # update python version\n",
|
|
" # install setuptools\n",
|
|
" # %pip install setuptools==61 -qqq\n",
|
|
" # install ammico\n",
|
|
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
|
" # mount google drive for data and API key\n",
|
|
" from google.colab import drive\n",
|
|
"\n",
|
|
" drive.mount(\"/content/drive\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b21e52a5-d379-42db-aae6-f2ab9ed9a369",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import ammico\n",
|
|
"from ammico import utils as mutils\n",
|
|
"from ammico import display as mdisplay"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "a2bd2153",
|
|
"metadata": {},
|
|
"source": [
|
|
"We select a subset of image files to try facial expression detection on, see the `limit` keyword. The `find_files` function finds image files within a given directory:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "afe7e638-f09d-47e7-9295-1c374bd64c53",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Here you need to provide the path to your google drive folder\n",
|
|
"# or local folder containing the images\n",
|
|
"images = mutils.find_files(\n",
|
|
" path=\"data/\",\n",
|
|
" limit=10,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "705e7328",
|
|
"metadata": {},
|
|
"source": [
|
|
"We need to initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b37c0c91",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"mydict = mutils.initialize_dict(images)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "a9372561",
|
|
"metadata": {},
|
|
"source": [
|
|
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
|
|
"Here, we display the face recognition results provided by the DeepFace and RetinaFace libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "992499ed-33f1-4425-ad5d-738cf565d175",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"faces\")\n",
|
|
"analysis_explorer.run_server(port = 8050)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "6f974341",
|
|
"metadata": {},
|
|
"source": [
|
|
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6f97c7d0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for key in mydict.keys():\n",
|
|
" mydict[key] = ammico.faces.EmotionDetector(mydict[key]).analyse_image()"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "174357b1",
|
|
"metadata": {},
|
|
"source": [
|
|
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "604bd257",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"outdict = mutils.append_data_to_dict(mydict)\n",
|
|
"df = mutils.dump_df(outdict)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "8373d9f8",
|
|
"metadata": {},
|
|
"source": [
|
|
"Check the dataframe:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "aa4b518a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df.head(10)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "579cd59f",
|
|
"metadata": {},
|
|
"source": [
|
|
"Write the csv file - here you should provide a file path and file name for the csv file to be written."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4618decb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df.to_csv(\"data_out.csv\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b1a80023",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "da98320027a74839c7141b42ef24e2d47d628ba1f51115c13da5d8b45a372ec2"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|