зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 21:16:06 +02:00
184 строки
6.7 KiB
Python
184 строки
6.7 KiB
Python
import os
|
||
import pytest
|
||
import spacy
|
||
import ammico.text as tt
|
||
|
||
|
||
@pytest.fixture
|
||
def set_testdict(get_path):
|
||
testdict = {
|
||
"IMG_3755": {
|
||
"filename": get_path + "IMG_3755.jpg",
|
||
},
|
||
"IMG_3756": {
|
||
"filename": get_path + "IMG_3756.jpg",
|
||
},
|
||
"IMG_3757": {
|
||
"filename": get_path + "IMG_3757.jpg",
|
||
},
|
||
}
|
||
return testdict
|
||
|
||
|
||
LANGUAGES = ["de", "om", "en"]
|
||
|
||
|
||
def test_TextDetector(set_testdict):
|
||
for item in set_testdict:
|
||
test_obj = tt.TextDetector(set_testdict[item])
|
||
assert test_obj.subdict["text"] is None
|
||
assert test_obj.subdict["text_language"] is None
|
||
assert test_obj.subdict["text_english"] is None
|
||
assert not test_obj.analyse_text
|
||
|
||
|
||
@pytest.mark.gcv
|
||
def test_analyse_image(set_testdict, set_environ):
|
||
for item in set_testdict:
|
||
test_obj = tt.TextDetector(set_testdict[item])
|
||
test_obj.analyse_image()
|
||
test_obj = tt.TextDetector(set_testdict[item], analyse_text=True)
|
||
test_obj.analyse_image()
|
||
|
||
|
||
@pytest.mark.gcv
|
||
def test_get_text_from_image(set_testdict, get_path, set_environ):
|
||
for item in set_testdict:
|
||
test_obj = tt.TextDetector(set_testdict[item])
|
||
test_obj.get_text_from_image()
|
||
ref_file = get_path + "text_" + item + ".txt"
|
||
with open(ref_file, "r", encoding="utf8") as file:
|
||
reference_text = file.read()
|
||
assert test_obj.subdict["text"] == reference_text
|
||
|
||
|
||
def test_translate_text(set_testdict, get_path):
|
||
for item, lang in zip(set_testdict, LANGUAGES):
|
||
test_obj = tt.TextDetector(set_testdict[item])
|
||
ref_file = get_path + "text_" + item + ".txt"
|
||
trans_file = get_path + "text_translated_" + item + ".txt"
|
||
with open(ref_file, "r", encoding="utf8") as file:
|
||
reference_text = file.read()
|
||
with open(trans_file, "r", encoding="utf8") as file:
|
||
translated_text = file.read()
|
||
test_obj.subdict["text"] = reference_text
|
||
test_obj.translate_text()
|
||
assert test_obj.subdict["text_language"] == lang
|
||
assert test_obj.subdict["text_english"] == translated_text
|
||
|
||
|
||
def test_remove_linebreaks():
|
||
test_obj = tt.TextDetector({})
|
||
test_obj.subdict["text"] = "This is \n a test."
|
||
test_obj.subdict["text_english"] = "This is \n another\n test."
|
||
test_obj.remove_linebreaks()
|
||
assert test_obj.subdict["text"] == "This is a test."
|
||
assert test_obj.subdict["text_english"] == "This is another test."
|
||
|
||
|
||
def test_run_spacy(set_testdict, get_path):
|
||
test_obj = tt.TextDetector(set_testdict["IMG_3755"], analyse_text=True)
|
||
ref_file = get_path + "text_IMG_3755.txt"
|
||
with open(ref_file, "r") as file:
|
||
reference_text = file.read()
|
||
test_obj.subdict["text_english"] = reference_text
|
||
test_obj._run_spacy()
|
||
assert isinstance(test_obj.doc, spacy.tokens.doc.Doc)
|
||
|
||
|
||
def test_clean_text(set_testdict):
|
||
nlp = spacy.load("en_core_web_md")
|
||
doc = nlp("I like cats and fjejg")
|
||
test_obj = tt.TextDetector(set_testdict["IMG_3755"])
|
||
test_obj.doc = doc
|
||
test_obj.clean_text()
|
||
result = "I like cats and"
|
||
assert test_obj.subdict["text_clean"] == result
|
||
|
||
|
||
def test_correct_spelling():
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True)
|
||
test_obj.subdict["text_english"] = "I lik cats ad dogs."
|
||
test_obj.correct_spelling()
|
||
result = "I like cats ad dogs."
|
||
assert test_obj.subdict["text_english_correct"] == result
|
||
|
||
|
||
def test_sentiment_analysis():
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True)
|
||
test_obj.subdict["text_english"] = "I love cats and dogs."
|
||
test_obj._run_spacy()
|
||
test_obj.correct_spelling()
|
||
test_obj.sentiment_analysis()
|
||
assert test_obj.subdict["polarity"] == 0.5
|
||
assert test_obj.subdict["subjectivity"] == 0.6
|
||
|
||
|
||
@pytest.mark.win_skip
|
||
def test_text_summary(get_path):
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True)
|
||
ref_file = get_path + "example_summary.txt"
|
||
with open(ref_file, "r", encoding="utf8") as file:
|
||
reference_text = file.read()
|
||
mydict["text_english"] = reference_text
|
||
test_obj.text_summary()
|
||
reference_summary = " I’m sorry, but I don’t want to be an emperor"
|
||
assert mydict["text_summary"] == reference_summary
|
||
|
||
|
||
def test_text_sentiment_transformers():
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True)
|
||
mydict["text_english"] = "I am happy that the CI is working again."
|
||
test_obj.text_sentiment_transformers()
|
||
assert mydict["sentiment"] == "POSITIVE"
|
||
assert mydict["sentiment_score"] == pytest.approx(0.99, 0.01)
|
||
|
||
|
||
def test_text_ner():
|
||
mydict = {}
|
||
test_obj = tt.TextDetector(mydict, analyse_text=True)
|
||
mydict["text_english"] = "Bill Gates was born in Seattle."
|
||
test_obj.text_ner()
|
||
assert mydict["entity"] == ["Bill Gates", "Seattle"]
|
||
assert mydict["entity_type"] == ["PER", "LOC"]
|
||
|
||
|
||
def test_PostprocessText(set_testdict, get_path):
|
||
reference_dict = "THE\nALGEBRAIC\nEIGENVALUE\nPROBLEM\nDOM\nNVS TIO\nMINA\nMonographs\non Numerical Analysis\nJ.. H. WILKINSON"
|
||
reference_df = "Mathematische Formelsammlung\nfür Ingenieure und Naturwissenschaftler\nMit zahlreichen Abbildungen und Rechenbeispielen\nund einer ausführlichen Integraltafel\n3., verbesserte Auflage"
|
||
img_numbers = ["IMG_3755", "IMG_3756", "IMG_3757"]
|
||
for image_ref in img_numbers:
|
||
ref_file = get_path + "text_" + image_ref + ".txt"
|
||
with open(ref_file, "r") as file:
|
||
reference_text = file.read()
|
||
set_testdict[image_ref]["text_english"] = reference_text
|
||
obj = tt.PostprocessText(mydict=set_testdict)
|
||
test_dict = obj.list_text_english[2].replace("\r", "")
|
||
assert test_dict == reference_dict
|
||
for key in set_testdict.keys():
|
||
set_testdict[key].pop("text_english")
|
||
with pytest.raises(ValueError):
|
||
tt.PostprocessText(mydict=set_testdict)
|
||
obj = tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out.csv")
|
||
# make sure test works on windows where end-of-line character is \r\n
|
||
test_df = obj.list_text_english[0].replace("\r", "")
|
||
assert test_df == reference_df
|
||
with pytest.raises(ValueError):
|
||
tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out_nokey.csv")
|
||
with pytest.raises(ValueError):
|
||
tt.PostprocessText()
|
||
|
||
|
||
def test_analyse_topic(get_path):
|
||
_, topic_df, most_frequent_topics = tt.PostprocessText(
|
||
use_csv=True, csv_path=get_path + "topic_analysis_test.csv"
|
||
).analyse_topic()
|
||
# since this is not deterministic we cannot be sure we get the same result twice
|
||
assert len(topic_df) == 2
|
||
assert topic_df["Name"].iloc[0] == "0_the_feat_of_is"
|
||
assert most_frequent_topics[0][0][0] == "the"
|