AMMICO/build/html/notebooks/Example colors.ipynb

363 строки
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Color Detector\n",
"\n",
"\n",
"\n",
"This notebook shows primary color analysis of color image using K-Means algorithm.\n",
"The output are N primary colors and their corresponding percentage.\n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:08.580446Z",
"iopub.status.busy": "2023-11-08T13:57:08.580013Z",
"iopub.status.idle": "2023-11-08T13:57:08.588398Z",
"shell.execute_reply": "2023-11-08T13:57:08.587819Z"
}
},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:08.591760Z",
"iopub.status.busy": "2023-11-08T13:57:08.591090Z",
"iopub.status.idle": "2023-11-08T13:57:23.381785Z",
"shell.execute_reply": "2023-11-08T13:57:23.381109Z"
}
},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We select a subset of image files to try the color analysis on, see the `limit` keyword. The `find_files` function finds image files within a given directory:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:23.386221Z",
"iopub.status.busy": "2023-11-08T13:57:23.384585Z",
"iopub.status.idle": "2023-11-08T13:57:23.390401Z",
"shell.execute_reply": "2023-11-08T13:57:23.389828Z"
}
},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"image_dict = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can skip this and directly export a csv file in the step below.\n",
"Here, we display the color detection results provided by `colorgram` and `colour` libraries. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:23.393980Z",
"iopub.status.busy": "2023-11-08T13:57:23.393760Z",
"iopub.status.idle": "2023-11-08T13:57:23.433263Z",
"shell.execute_reply": "2023-11-08T13:57:23.432554Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"100%\"\n",
" height=\"650\"\n",
" src=\"http://127.0.0.1:8057/\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x7f7653f8ee20>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(image_dict)\n",
"analysis_explorer.run_server(port = 8057)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:23.436771Z",
"iopub.status.busy": "2023-11-08T13:57:23.436514Z",
"iopub.status.idle": "2023-11-08T13:57:30.074608Z",
"shell.execute_reply": "2023-11-08T13:57:30.073892Z"
}
},
"outputs": [],
"source": [
"for key in image_dict.keys():\n",
" image_dict[key] = ammico.colors.ColorDetector(image_dict[key]).analyse_image()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:30.078052Z",
"iopub.status.busy": "2023-11-08T13:57:30.077824Z",
"iopub.status.idle": "2023-11-08T13:57:30.083115Z",
"shell.execute_reply": "2023-11-08T13:57:30.082497Z"
}
},
"outputs": [],
"source": [
"image_df = ammico.get_dataframe(image_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:30.086436Z",
"iopub.status.busy": "2023-11-08T13:57:30.085935Z",
"iopub.status.idle": "2023-11-08T13:57:30.100156Z",
"shell.execute_reply": "2023-11-08T13:57:30.099490Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" <th>red</th>\n",
" <th>green</th>\n",
" <th>blue</th>\n",
" <th>yellow</th>\n",
" <th>cyan</th>\n",
" <th>orange</th>\n",
" <th>purple</th>\n",
" <th>pink</th>\n",
" <th>brown</th>\n",
" <th>grey</th>\n",
" <th>white</th>\n",
" <th>black</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>data/106349S_por.png</td>\n",
" <td>0.01</td>\n",
" <td>0.01</td>\n",
" <td>0.05</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.22</td>\n",
" <td>0.0</td>\n",
" <td>0.03</td>\n",
" <td>0.68</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>data/102141_2_eng.png</td>\n",
" <td>0.04</td>\n",
" <td>0.03</td>\n",
" <td>0.02</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.01</td>\n",
" <td>0.0</td>\n",
" <td>0.32</td>\n",
" <td>0.23</td>\n",
" <td>0.31</td>\n",
" <td>0.05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>data/102730_eng.png</td>\n",
" <td>0.05</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.66</td>\n",
" <td>0.02</td>\n",
" <td>0.27</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename red green blue yellow cyan orange purple \\\n",
"0 data/106349S_por.png 0.01 0.01 0.05 0.0 0 0 0.22 \n",
"1 data/102141_2_eng.png 0.04 0.03 0.02 0.0 0 0 0.01 \n",
"2 data/102730_eng.png 0.05 0.00 0.00 0.0 0 0 0.00 \n",
"\n",
" pink brown grey white black \n",
"0 0.0 0.03 0.68 0.00 0.00 \n",
"1 0.0 0.32 0.23 0.31 0.05 \n",
"2 0.0 0.00 0.66 0.02 0.27 "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"image_df.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file - here you should provide a file path and file name for the csv file to be written."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-11-08T13:57:30.104152Z",
"iopub.status.busy": "2023-11-08T13:57:30.103577Z",
"iopub.status.idle": "2023-11-08T13:57:30.109533Z",
"shell.execute_reply": "2023-11-08T13:57:30.108756Z"
}
},
"outputs": [],
"source": [
"image_df.to_csv(\"data_out.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}