AMMICO/misinformation/test/test_text.py
Petr Andriushchenko a5c43b6488
Test debugging (#62)
* deleted lavis from utils

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fixed test_objects

* added 'not gcv' to CI

* fixed multimodal search and summary tests

* disable doc build on PR for now

* restrict ipywidgets version to avoid dummycomm error

* limit deepface version

* original repositories for retinaface lavis

* update gcv test results

* update display test outputs

* update test env

* run all tests

* wo xdist to avoid segfault

* remove widgets ref

* skip long-running tests

* skip long

* verbose codecov upload

* refactor summary test 2

* finish summary test refactor

* reduce memory overhead of SummaryDetector

* remove VQA models from self

* remove VQA models from self

* update notebook for changes

* update notebook for changes

* fixed multimodal search tests

* fixed tests in multimodal search after precommit

* run all tests

* update doc notebook for summary changes

* skip long-running multimodal

* exclude blip2 from testing

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
2023-03-30 10:33:05 +02:00

153 строки
5.6 KiB
Python

import os
import pytest
import spacy
import misinformation.text as tt
@pytest.fixture
def set_testdict(get_path):
testdict = {
"IMG_3755": {
"filename": get_path + "IMG_3755.jpg",
},
"IMG_3756": {
"filename": get_path + "IMG_3756.jpg",
},
"IMG_3757": {
"filename": get_path + "IMG_3757.jpg",
},
}
return testdict
LANGUAGES = ["de", "om", "en"]
def test_TextDetector(set_testdict):
for item in set_testdict:
test_obj = tt.TextDetector(set_testdict[item])
assert test_obj.subdict["text"] is None
assert test_obj.subdict["text_language"] is None
assert test_obj.subdict["text_english"] is None
assert not test_obj.analyse_text
@pytest.mark.gcv
def test_analyse_image(set_testdict, set_environ):
for item in set_testdict:
test_obj = tt.TextDetector(set_testdict[item])
test_obj.analyse_image()
test_obj = tt.TextDetector(set_testdict[item], analyse_text=True)
test_obj.analyse_image()
@pytest.mark.gcv
def test_get_text_from_image(set_testdict, get_path, set_environ):
for item in set_testdict:
test_obj = tt.TextDetector(set_testdict[item])
test_obj.get_text_from_image()
ref_file = get_path + "text_" + item + ".txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
assert test_obj.subdict["text"] == reference_text
def test_translate_text(set_testdict, get_path):
for item, lang in zip(set_testdict, LANGUAGES):
test_obj = tt.TextDetector(set_testdict[item])
ref_file = get_path + "text_" + item + ".txt"
trans_file = get_path + "text_translated_" + item + ".txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
with open(trans_file, "r", encoding="utf8") as file:
translated_text = file.read()
test_obj.subdict["text"] = reference_text
test_obj.translate_text()
assert test_obj.subdict["text_language"] == lang
assert test_obj.subdict["text_english"] == translated_text
def test_remove_linebreaks():
test_obj = tt.TextDetector({})
test_obj.subdict["text"] = "This is \n a test."
test_obj.subdict["text_english"] = "This is \n another\n test."
test_obj.remove_linebreaks()
assert test_obj.subdict["text"] == "This is a test."
assert test_obj.subdict["text_english"] == "This is another test."
def test_run_spacy(set_testdict, get_path):
test_obj = tt.TextDetector(set_testdict["IMG_3755"], analyse_text=True)
ref_file = get_path + "text_IMG_3755.txt"
with open(ref_file, "r") as file:
reference_text = file.read()
test_obj.subdict["text_english"] = reference_text
test_obj._run_spacy()
assert isinstance(test_obj.doc, spacy.tokens.doc.Doc)
def test_clean_text(set_testdict):
nlp = spacy.load("en_core_web_md")
doc = nlp("I like cats and fjejg")
test_obj = tt.TextDetector(set_testdict["IMG_3755"])
test_obj.doc = doc
test_obj.clean_text()
result = "I like cats and"
assert test_obj.subdict["text_clean"] == result
def test_correct_spelling():
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
test_obj.subdict["text_english"] = "I lik cats ad dogs."
test_obj.correct_spelling()
result = "I like cats ad dogs."
assert test_obj.subdict["text_english_correct"] == result
def test_sentiment_analysis():
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
test_obj.subdict["text_english"] = "I love cats and dogs."
test_obj._run_spacy()
test_obj.correct_spelling()
test_obj.sentiment_analysis()
assert test_obj.subdict["polarity"] == 0.5
assert test_obj.subdict["subjectivity"] == 0.6
def test_PostprocessText(set_testdict, get_path):
reference_dict = "THE\nALGEBRAIC\nEIGENVALUE\nPROBLEM\nDOM\nNVS TIO\nMINA\nMonographs\non Numerical Analysis\nJ.. H. WILKINSON"
reference_df = "Mathematische Formelsammlung\nfür Ingenieure und Naturwissenschaftler\nMit zahlreichen Abbildungen und Rechenbeispielen\nund einer ausführlichen Integraltafel\n3., verbesserte Auflage"
img_numbers = ["IMG_3755", "IMG_3756", "IMG_3757"]
for image_ref in img_numbers:
ref_file = get_path + "text_" + image_ref + ".txt"
with open(ref_file, "r") as file:
reference_text = file.read()
set_testdict[image_ref]["text_english"] = reference_text
obj = tt.PostprocessText(mydict=set_testdict)
test_dict = obj.list_text_english[2].replace("\r", "")
assert test_dict == reference_dict
for key in set_testdict.keys():
set_testdict[key].pop("text_english")
with pytest.raises(ValueError):
tt.PostprocessText(mydict=set_testdict)
obj = tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out.csv")
# make sure test works on windows where end-of-line character is \r\n
test_df = obj.list_text_english[0].replace("\r", "")
assert test_df == reference_df
with pytest.raises(ValueError):
tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out_nokey.csv")
with pytest.raises(ValueError):
tt.PostprocessText()
def test_analyse_topic(get_path):
_, topic_df, most_frequent_topics = tt.PostprocessText(
use_csv=True, csv_path=get_path + "topic_analysis_test.csv"
).analyse_topic()
# since this is not deterministic we cannot be sure we get the same result twice
assert len(topic_df) == 2
assert topic_df["Name"].iloc[0] == "0_the_feat_of_is"
assert most_frequent_topics[0][0][0] == "the"