AMMICO/misinformation/test/test_text.py
Inga Ulusoy a6578cfdf3
Topic analysis (#53)
* add bertopic to requirements

* basic topic modeling

* topic modeling using BERT; bugfix if no text on post

* update for google colab

* Catch connection errors

* replace newline character with space

* move topic analysis into PostprocessText class

* set up dataflow topic analysis

* expose topic model to UI

* tests for class init

* tests for topic analysis

* more tests

* take care of carriage return on windows

* take care of carriage return on windows

* take care of carriage return on windows

* set encoding to ensure windows compatibility

* track encoding error

* more debug

* skip topic analysis debug

* windows fixes
2023-02-13 11:45:24 +01:00

149 строки
5.2 KiB
Python

import os
import pytest
import spacy
import misinformation.text as tt
import misinformation
import pandas as pd
TESTDICT = {
"IMG_3755": {
"filename": "./test/data/IMG_3755.jpg",
},
"IMG_3756": {
"filename": "./test/data/IMG_3756.jpg",
},
"IMG_3757": {
"filename": "./test/data/IMG_3757.jpg",
},
}
LANGUAGES = ["de", "om", "en"]
os.environ[
"GOOGLE_APPLICATION_CREDENTIALS"
] = "../data/seismic-bonfire-329406-412821a70264.json"
def test_TextDetector():
for item in TESTDICT:
test_obj = tt.TextDetector(TESTDICT[item])
assert test_obj.subdict["text"] is None
assert test_obj.subdict["text_language"] is None
assert test_obj.subdict["text_english"] is None
assert not test_obj.analyse_text
@pytest.mark.gcv
def test_analyse_image():
for item in TESTDICT:
test_obj = tt.TextDetector(TESTDICT[item])
test_obj.analyse_image()
test_obj = tt.TextDetector(TESTDICT[item], analyse_text=True)
test_obj.analyse_image()
@pytest.mark.gcv
def test_get_text_from_image():
for item in TESTDICT:
test_obj = tt.TextDetector(TESTDICT[item])
test_obj.get_text_from_image()
ref_file = "./test/data/text_" + item + ".txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
assert test_obj.subdict["text"] == reference_text
def test_translate_text():
for item, lang in zip(TESTDICT, LANGUAGES):
test_obj = tt.TextDetector(TESTDICT[item])
ref_file = "./test/data/text_" + item + ".txt"
trans_file = "./test/data/text_translated_" + item + ".txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
with open(trans_file, "r", encoding="utf8") as file:
translated_text = file.read()
test_obj.subdict["text"] = reference_text
test_obj.translate_text()
assert test_obj.subdict["text_language"] == lang
assert test_obj.subdict["text_english"] == translated_text
def test_remove_linebreaks():
test_obj = tt.TextDetector({})
test_obj.subdict["text"] = "This is \n a test."
test_obj.subdict["text_english"] = "This is \n another\n test."
test_obj.remove_linebreaks()
assert test_obj.subdict["text"] == "This is a test."
assert test_obj.subdict["text_english"] == "This is another test."
def test_run_spacy():
test_obj = tt.TextDetector(TESTDICT["IMG_3755"], analyse_text=True)
ref_file = "./test/data/text_IMG_3755.txt"
with open(ref_file, "r") as file:
reference_text = file.read()
test_obj.subdict["text_english"] = reference_text
test_obj._run_spacy()
assert isinstance(test_obj.doc, spacy.tokens.doc.Doc)
def test_clean_text():
nlp = spacy.load("en_core_web_md")
doc = nlp("I like cats and fjejg")
test_obj = tt.TextDetector(TESTDICT["IMG_3755"])
test_obj.doc = doc
test_obj.clean_text()
result = "I like cats and"
assert test_obj.subdict["text_clean"] == result
def test_correct_spelling():
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
test_obj.subdict["text_english"] = "I lik cats ad dogs."
test_obj.correct_spelling()
result = "I like cats ad dogs."
assert test_obj.subdict["text_english_correct"] == result
def test_sentiment_analysis():
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
test_obj.subdict["text_english"] = "I love cats and dogs."
test_obj._run_spacy()
test_obj.correct_spelling()
test_obj.sentiment_analysis()
assert test_obj.subdict["polarity"] == 0.5
assert test_obj.subdict["subjectivity"] == 0.6
def test_PostprocessText():
reference_dict = "THE\nALGEBRAIC\nEIGENVALUE\nPROBLEM\nDOM\nNVS TIO\nMINA\nMonographs\non Numerical Analysis\nJ.. H. WILKINSON"
reference_df = "Mathematische Formelsammlung\nfür Ingenieure und Naturwissenschaftler\nMit zahlreichen Abbildungen und Rechenbeispielen\nund einer ausführlichen Integraltafel\n3., verbesserte Auflage"
obj = tt.PostprocessText(mydict=TESTDICT)
# make sure test works on windows where end-of-line character is \r\n
test_dict = obj.list_text_english[2].replace("\r", "")
assert test_dict == reference_dict
for key in TESTDICT.keys():
TESTDICT[key].pop("text_english")
with pytest.raises(ValueError):
tt.PostprocessText(mydict=TESTDICT)
obj = tt.PostprocessText(use_csv=True, csv_path="./test/data/test_data_out.csv")
# make sure test works on windows where end-of-line character is \r\n
test_df = obj.list_text_english[0].replace("\r", "")
assert test_df == reference_df
with pytest.raises(ValueError):
tt.PostprocessText(use_csv=True, csv_path="./test/data/test_data_out_nokey.csv")
with pytest.raises(ValueError):
tt.PostprocessText()
def test_analyse_topic():
_, topic_df, most_frequent_topics = tt.PostprocessText(
use_csv=True, csv_path="./test/data/topic_analysis_test.csv"
).analyse_topic()
# since this is not deterministic we cannot be sure we get the same result twice
assert len(topic_df) == 2
assert topic_df["Name"].iloc[0] == "0_the_feat_of_is"
assert most_frequent_topics[0][0][0] == "the"