зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 05:26:05 +02:00
201 строка
6.5 KiB
Python
201 строка
6.5 KiB
Python
import cv2
|
|
import ipywidgets
|
|
import numpy as np
|
|
import os
|
|
import pathlib
|
|
|
|
from tensorflow.keras.models import load_model
|
|
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
|
from tensorflow.keras.preprocessing.image import img_to_array
|
|
from IPython.display import display
|
|
from deepface import DeepFace
|
|
from retinaface import RetinaFace
|
|
|
|
from misinformation.utils import DownloadResource
|
|
|
|
|
|
def deepface_symlink_processor(name):
|
|
def _processor(fname, action, pooch):
|
|
if not os.path.exists(name):
|
|
os.symlink(fname, name)
|
|
return fname
|
|
|
|
return _processor
|
|
|
|
|
|
face_mask_model = DownloadResource(
|
|
url="https://github.com/chandrikadeb7/Face-Mask-Detection/raw/v1.0.0/mask_detector.model",
|
|
known_hash="sha256:d0b30e2c7f8f187c143d655dee8697fcfbe8678889565670cd7314fb064eadc8",
|
|
)
|
|
|
|
deepface_age_model = DownloadResource(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5",
|
|
known_hash="sha256:0aeff75734bfe794113756d2bfd0ac823d51e9422c8961125b570871d3c2b114",
|
|
processor=deepface_symlink_processor(
|
|
pathlib.Path.home().joinpath(".deepface", "weights", "age_model_weights.h5")
|
|
),
|
|
)
|
|
|
|
deepface_face_expression_model = DownloadResource(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5",
|
|
known_hash="sha256:e8e8851d3fa05c001b1c27fd8841dfe08d7f82bb786a53ad8776725b7a1e824c",
|
|
processor=deepface_symlink_processor(
|
|
pathlib.Path.home().joinpath(
|
|
".deepface", "weights", "facial_expression_model_weights.h5"
|
|
)
|
|
),
|
|
)
|
|
|
|
deepface_gender_model = DownloadResource(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5",
|
|
known_hash="sha256:45513ce5678549112d25ab85b1926fb65986507d49c674a3d04b2ba70dba2eb5",
|
|
processor=deepface_symlink_processor(
|
|
pathlib.Path.home().joinpath(".deepface", "weights", "gender_model_weights.h5")
|
|
),
|
|
)
|
|
|
|
deepface_race_model = DownloadResource(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/race_model_single_batch.h5",
|
|
known_hash="sha256:eb22b28b1f6dfce65b64040af4e86003a5edccb169a1a338470dde270b6f5e54",
|
|
processor=deepface_symlink_processor(
|
|
pathlib.Path.home().joinpath(
|
|
".deepface", "weights", "race_model_single_batch.h5"
|
|
)
|
|
),
|
|
)
|
|
|
|
retinaface_model = DownloadResource(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/retinaface.h5",
|
|
known_hash="sha256:ecb2393a89da3dd3d6796ad86660e298f62a0c8ae7578d92eb6af14e0bb93adf",
|
|
processor=deepface_symlink_processor(
|
|
pathlib.Path.home().joinpath(".deepface", "weights", "retinaface.h5")
|
|
),
|
|
)
|
|
|
|
|
|
def facial_expression_analysis(img_path):
|
|
result = {"filename": img_path}
|
|
|
|
# Find (multiple) faces in the image and cut them
|
|
retinaface_model.get()
|
|
faces = RetinaFace.extract_faces(img_path)
|
|
|
|
# If no faces are found, we return an empty dictionary
|
|
if len(faces) == 0:
|
|
return result
|
|
|
|
# Find the biggest face image in the detected ones
|
|
maxface = max(faces, key=lambda f: f.shape[0] * f.shape[1])
|
|
|
|
# Determine whether the face wears a mask
|
|
result["wears_mask"] = wears_mask(maxface)
|
|
|
|
# Adapt the features we are looking for depending on whether a mask is
|
|
# worn. White masks screw race detection, emotion detection is useless.
|
|
actions = ["age", "gender"]
|
|
if not result["wears_mask"]:
|
|
actions = actions + ["race", "emotion"]
|
|
|
|
# Ensure that all data has been fetched by pooch
|
|
deepface_age_model.get()
|
|
deepface_face_expression_model.get()
|
|
deepface_gender_model.get()
|
|
deepface_race_model.get()
|
|
|
|
# Run the full DeepFace analysis
|
|
result["deepface_results"] = DeepFace.analyze(
|
|
img_path=maxface,
|
|
actions=actions,
|
|
prog_bar=False,
|
|
detector_backend="skip",
|
|
)
|
|
|
|
# We remove the region, as the data is not correct - after all we are
|
|
# running the analysis on a subimage.
|
|
del result["deepface_results"]["region"]
|
|
|
|
return result
|
|
|
|
|
|
def wears_mask(face):
|
|
global mask_detection_model
|
|
|
|
# Preprocess the face to match the assumptions of the face mask
|
|
# detection model
|
|
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
|
face = cv2.resize(face, (224, 224))
|
|
face = img_to_array(face)
|
|
face = preprocess_input(face)
|
|
face = np.expand_dims(face, axis=0)
|
|
|
|
# Lazily load the model
|
|
mask_detection_model = load_model(face_mask_model.get())
|
|
|
|
# Run the model (ignoring output)
|
|
with NocatchOutput():
|
|
mask, withoutMask = mask_detection_model.predict(face)[0]
|
|
|
|
# Convert from np.bool_ to bool to later be able to serialize the result
|
|
return bool(mask > withoutMask)
|
|
|
|
|
|
class JSONContainer:
|
|
"""Expose a Python dictionary as a JSON document in JupyterLab
|
|
rich display rendering.
|
|
"""
|
|
|
|
def __init__(self, data={}):
|
|
self._data = data
|
|
|
|
def _repr_json_(self):
|
|
return self._data
|
|
|
|
|
|
class NocatchOutput(ipywidgets.Output):
|
|
"""An output container that suppresses output, but not exceptions
|
|
|
|
Taken from https://github.com/jupyter-widgets/ipywidgets/issues/3208#issuecomment-1070836153
|
|
"""
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
super().__exit__(*args, **kwargs)
|
|
|
|
|
|
def explore_face_recognition(image_paths):
|
|
# Create an image selector widget
|
|
image_select = ipywidgets.Select(
|
|
options=image_paths, layout=ipywidgets.Layout(width="20%"), rows=20
|
|
)
|
|
|
|
# Set up the facial recognition output widget
|
|
output = ipywidgets.Output(layout=ipywidgets.Layout(width="30%"))
|
|
|
|
# Set up the image selection and display widget
|
|
image_widget = ipywidgets.Box(
|
|
children=[],
|
|
layout=ipywidgets.Layout(width="50%"),
|
|
)
|
|
|
|
# Register the tab switch logic
|
|
def switch(_):
|
|
# Clear existing output
|
|
image_widget.children = ()
|
|
output.clear_output()
|
|
|
|
# Create the new content
|
|
image_widget.children = (ipywidgets.Image.from_file(image_select.value),)
|
|
|
|
# This output widget absorbes print statements that are messing with
|
|
# the widget output and cannot be disabled through the API.
|
|
with NocatchOutput():
|
|
analysis = facial_expression_analysis(image_select.value)
|
|
with output:
|
|
display(JSONContainer(analysis))
|
|
|
|
# Register the handler and trigger it immediately
|
|
image_select.observe(switch, names=("value",), type="change")
|
|
switch(None)
|
|
|
|
# Show the combined widget
|
|
return ipywidgets.HBox([image_select, image_widget, output])
|