AMMICO/build/html/notebooks/Example summary.ipynb

2116 строки
51 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image summary and visual question answering"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n",
"\n",
"The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
"\n",
"After that, we can import `ammico` and read in the files given a folder path."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:34:03.421602Z",
"iopub.status.busy": "2023-06-27T07:34:03.420722Z",
"iopub.status.idle": "2023-06-27T07:34:03.431487Z",
"shell.execute_reply": "2023-06-27T07:34:03.430247Z"
}
},
"outputs": [],
"source": [
"# if running on google colab\n",
"# flake8-noqa-cell\n",
"import os\n",
"\n",
"if \"google.colab\" in str(get_ipython()):\n",
" # update python version\n",
" # install setuptools\n",
" # %pip install setuptools==61 -qqq\n",
" # install ammico\n",
" %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
" drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:34:03.434664Z",
"iopub.status.busy": "2023-06-27T07:34:03.434229Z",
"iopub.status.idle": "2023-06-27T07:34:14.649927Z",
"shell.execute_reply": "2023-06-27T07:34:14.649225Z"
},
"tags": []
},
"outputs": [],
"source": [
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.summary as sm"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:34:14.653533Z",
"iopub.status.busy": "2023-06-27T07:34:14.652734Z",
"iopub.status.idle": "2023-06-27T07:34:14.657008Z",
"shell.execute_reply": "2023-06-27T07:34:14.656335Z"
},
"tags": []
},
"outputs": [],
"source": [
"# Here you need to provide the path to your google drive folder\n",
"# or local folder containing the images\n",
"images = mutils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:34:14.660018Z",
"iopub.status.busy": "2023-06-27T07:34:14.659575Z",
"iopub.status.idle": "2023-06-27T07:34:14.662936Z",
"shell.execute_reply": "2023-06-27T07:34:14.662252Z"
},
"tags": []
},
"outputs": [],
"source": [
"mydict = mutils.initialize_dict(images)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create captions for images and directly write to csv"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n",
"\n",
"The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:34:14.666577Z",
"iopub.status.busy": "2023-06-27T07:34:14.666138Z",
"iopub.status.idle": "2023-06-27T07:35:20.595475Z",
"shell.execute_reply": "2023-06-27T07:35:20.583828Z"
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/2.50G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 4.72M/2.50G [00:00<00:54, 49.5MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 16.0M/2.50G [00:00<00:37, 71.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 24.0M/2.50G [00:00<00:49, 54.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 40.0M/2.50G [00:00<00:35, 74.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 48.0M/2.50G [00:00<00:35, 75.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 58.8M/2.50G [00:00<00:30, 85.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 69.8M/2.50G [00:00<00:27, 93.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 80.0M/2.50G [00:01<00:28, 90.0MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 88.9M/2.50G [00:01<00:29, 88.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 4%|▍ | 107M/2.50G [00:01<00:22, 115MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 121M/2.50G [00:01<00:20, 124MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▌ | 133M/2.50G [00:01<00:24, 104MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 146M/2.50G [00:01<00:22, 112MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▋ | 161M/2.50G [00:01<00:20, 125MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 7%|▋ | 176M/2.50G [00:01<00:18, 134MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 193M/2.50G [00:01<00:17, 145MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 210M/2.50G [00:02<00:15, 156MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 226M/2.50G [00:02<00:16, 153MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 9%|▉ | 242M/2.50G [00:02<00:15, 159MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|█ | 258M/2.50G [00:02<00:15, 159MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█ | 281M/2.50G [00:02<00:12, 184MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 12%|█▏ | 302M/2.50G [00:02<00:12, 195MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 321M/2.50G [00:02<00:12, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 339M/2.50G [00:02<00:13, 176MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 14%|█▍ | 367M/2.50G [00:02<00:11, 209MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 388M/2.50G [00:02<00:10, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 16%|█▌ | 408M/2.50G [00:03<00:12, 184MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 432M/2.50G [00:03<00:11, 189MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 457M/2.50G [00:03<00:10, 207MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▊ | 477M/2.50G [00:03<00:10, 203MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 19%|█▉ | 497M/2.50G [00:03<00:11, 190MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|██ | 516M/2.50G [00:03<00:14, 152MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 21%|██ | 543M/2.50G [00:03<00:11, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 562M/2.50G [00:04<00:12, 174MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 584M/2.50G [00:04<00:12, 166MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 23%|██▎ | 601M/2.50G [00:04<00:12, 165MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▍ | 629M/2.50G [00:04<00:10, 198MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 25%|██▌ | 653M/2.50G [00:04<00:09, 213MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▋ | 675M/2.50G [00:04<00:09, 215MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 27%|██▋ | 696M/2.50G [00:04<00:09, 209MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 28%|██▊ | 716M/2.50G [00:04<00:10, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▊ | 735M/2.50G [00:04<00:11, 170MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|██▉ | 760M/2.50G [00:05<00:09, 193MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 30%|███ | 779M/2.50G [00:05<00:10, 180MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 797M/2.50G [00:05<00:10, 176MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 32%|███▏ | 819M/2.50G [00:05<00:09, 189MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 844M/2.50G [00:05<00:08, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 34%|███▍ | 872M/2.50G [00:05<00:07, 234MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▍ | 895M/2.50G [00:05<00:07, 235MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 36%|███▌ | 920M/2.50G [00:05<00:08, 198MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 946M/2.50G [00:06<00:07, 216MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 968M/2.50G [00:06<00:09, 175MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 39%|███▊ | 991M/2.50G [00:06<00:08, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|███▉ | 0.99G/2.50G [00:06<00:07, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|████ | 1.01G/2.50G [00:06<00:07, 204MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.04G/2.50G [00:06<00:06, 226MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 1.06G/2.50G [00:06<00:07, 200MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▎ | 1.09G/2.50G [00:06<00:06, 224MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▍ | 1.12G/2.50G [00:06<00:06, 246MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▌ | 1.15G/2.50G [00:07<00:05, 257MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 1.17G/2.50G [00:07<00:05, 263MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 48%|████▊ | 1.20G/2.50G [00:07<00:05, 268MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 49%|████▉ | 1.23G/2.50G [00:07<00:04, 276MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|████▉ | 1.25G/2.50G [00:07<00:05, 251MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 1.28G/2.50G [00:07<00:05, 244MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 1.30G/2.50G [00:07<00:04, 260MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 53%|█████▎ | 1.33G/2.50G [00:07<00:04, 253MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▍ | 1.35G/2.50G [00:07<00:05, 235MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 55%|█████▌ | 1.38G/2.50G [00:08<00:04, 250MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 1.40G/2.50G [00:08<00:06, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 1.42G/2.50G [00:08<00:06, 189MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.45G/2.50G [00:08<00:06, 169MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 1.46G/2.50G [00:08<00:06, 161MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|█████▉ | 1.49G/2.50G [00:08<00:05, 193MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|██████ | 1.51G/2.50G [00:08<00:06, 171MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 61%|██████ | 1.53G/2.50G [00:09<00:05, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 1.56G/2.50G [00:09<00:04, 205MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 1.58G/2.50G [00:09<00:04, 202MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 1.60G/2.50G [00:09<00:04, 215MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▍ | 1.63G/2.50G [00:09<00:04, 222MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 66%|██████▌ | 1.65G/2.50G [00:09<00:04, 212MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 67%|██████▋ | 1.68G/2.50G [00:09<00:03, 236MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 1.70G/2.50G [00:09<00:03, 233MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 69%|██████▉ | 1.72G/2.50G [00:09<00:03, 225MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|██████▉ | 1.74G/2.50G [00:10<00:03, 215MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████ | 1.77G/2.50G [00:10<00:03, 223MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 71%|███████▏ | 1.79G/2.50G [00:10<00:03, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 1.81G/2.50G [00:10<00:03, 212MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 73%|███████▎ | 1.83G/2.50G [00:10<00:03, 211MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 1.85G/2.50G [00:10<00:04, 156MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 75%|███████▌ | 1.88G/2.50G [00:10<00:03, 175MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▋ | 1.91G/2.50G [00:11<00:03, 205MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 77%|███████▋ | 1.94G/2.50G [00:11<00:02, 226MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▊ | 1.97G/2.50G [00:11<00:02, 243MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|███████▉ | 1.99G/2.50G [00:11<00:02, 249MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 80%|████████ | 2.01G/2.50G [00:11<00:02, 183MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 82%|████████▏ | 2.04G/2.50G [00:11<00:02, 208MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 2.07G/2.50G [00:11<00:02, 225MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▎ | 2.09G/2.50G [00:11<00:02, 206MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 84%|████████▍ | 2.11G/2.50G [00:12<00:02, 200MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▌ | 2.13G/2.50G [00:12<00:02, 151MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 86%|████████▌ | 2.15G/2.50G [00:12<00:02, 152MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 2.17G/2.50G [00:12<00:02, 174MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 2.20G/2.50G [00:12<00:01, 194MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▊ | 2.22G/2.50G [00:12<00:01, 166MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 89%|████████▉ | 2.24G/2.50G [00:14<00:09, 29.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|████████▉ | 2.25G/2.50G [00:15<00:07, 34.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|█████████ | 2.26G/2.50G [00:15<00:06, 39.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.27G/2.50G [00:15<00:05, 46.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 91%|█████████ | 2.28G/2.50G [00:15<00:04, 52.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.30G/2.50G [00:15<00:03, 63.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 2.31G/2.50G [00:15<00:02, 76.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.32G/2.50G [00:15<00:02, 75.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 93%|█████████▎| 2.34G/2.50G [00:15<00:01, 98.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 2.36G/2.50G [00:16<00:01, 119MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 95%|█████████▌| 2.38G/2.50G [00:16<00:00, 142MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 2.40G/2.50G [00:16<00:00, 143MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▋| 2.41G/2.50G [00:16<00:00, 145MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 97%|█████████▋| 2.43G/2.50G [00:16<00:00, 148MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 2.45G/2.50G [00:16<00:00, 172MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 99%|█████████▉| 2.48G/2.50G [00:16<00:00, 193MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|█████████▉| 2.50G/2.50G [00:16<00:00, 203MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 2.50G/2.50G [00:16<00:00, 160MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 0.00/1.35G [00:00<?, ?B/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 0%| | 4.01M/1.35G [00:00<00:44, 32.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 1%| | 15.0M/1.35G [00:00<00:18, 75.8MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 2%|▏ | 24.0M/1.35G [00:00<00:31, 44.6MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 36.6M/1.35G [00:00<00:21, 66.2MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 3%|▎ | 48.0M/1.35G [00:00<00:18, 75.4MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 5%|▍ | 63.1M/1.35G [00:00<00:14, 96.7MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 6%|▌ | 83.6M/1.35G [00:00<00:10, 129MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 8%|▊ | 107M/1.35G [00:01<00:08, 162MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 10%|▉ | 132M/1.35G [00:01<00:06, 190MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 11%|█▏ | 158M/1.35G [00:01<00:06, 213MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 13%|█▎ | 183M/1.35G [00:01<00:05, 229MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 15%|█▌ | 209M/1.35G [00:01<00:05, 242MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 17%|█▋ | 233M/1.35G [00:01<00:08, 143MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 18%|█▊ | 252M/1.35G [00:02<00:09, 123MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 20%|██ | 276M/1.35G [00:02<00:07, 148MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 22%|██▏ | 302M/1.35G [00:02<00:06, 173MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 24%|██▍ | 333M/1.35G [00:02<00:05, 209MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 26%|██▋ | 362M/1.35G [00:02<00:04, 232MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 29%|██▊ | 394M/1.35G [00:02<00:04, 258MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 31%|███ | 424M/1.35G [00:02<00:03, 267MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 33%|███▎ | 452M/1.35G [00:02<00:05, 171MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 35%|███▍ | 478M/1.35G [00:03<00:04, 191MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 37%|███▋ | 504M/1.35G [00:03<00:04, 210MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 38%|███▊ | 528M/1.35G [00:03<00:04, 204MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 40%|████ | 556M/1.35G [00:03<00:03, 225MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 42%|████▏ | 579M/1.35G [00:03<00:07, 109MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 44%|████▍ | 605M/1.35G [00:04<00:06, 133MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 45%|████▌ | 626M/1.35G [00:04<00:09, 84.3MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 46%|████▋ | 641M/1.35G [00:04<00:09, 82.9MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 47%|████▋ | 654M/1.35G [00:04<00:09, 76.1MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 50%|████▉ | 684M/1.35G [00:05<00:06, 109MB/s] "
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 51%|█████ | 704M/1.35G [00:05<00:05, 125MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 52%|█████▏ | 721M/1.35G [00:05<00:05, 122MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 54%|█████▍ | 747M/1.35G [00:05<00:04, 150MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 56%|█████▌ | 768M/1.35G [00:05<00:04, 150MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 57%|█████▋ | 785M/1.35G [00:05<00:04, 136MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 58%|█████▊ | 800M/1.35G [00:05<00:05, 112MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 60%|█████▉ | 824M/1.35G [00:06<00:04, 134MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 62%|██████▏ | 850M/1.35G [00:06<00:03, 162MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 63%|██████▎ | 868M/1.35G [00:06<00:03, 155MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 64%|██████▍ | 884M/1.35G [00:06<00:03, 157MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 65%|██████▌ | 900M/1.35G [00:06<00:04, 112MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 68%|██████▊ | 931M/1.35G [00:06<00:03, 155MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 70%|██████▉ | 963M/1.35G [00:06<00:02, 193MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 72%|███████▏ | 994M/1.35G [00:07<00:01, 225MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 74%|███████▍ | 1.00G/1.35G [00:07<00:01, 226MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 76%|███████▋ | 1.03G/1.35G [00:07<00:01, 252MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 79%|███████▊ | 1.06G/1.35G [00:07<00:01, 272MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 81%|████████ | 1.09G/1.35G [00:07<00:00, 285MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 83%|████████▎ | 1.12G/1.35G [00:07<00:00, 279MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 85%|████████▍ | 1.14G/1.35G [00:07<00:00, 274MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 87%|████████▋ | 1.17G/1.35G [00:08<00:01, 168MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 88%|████████▊ | 1.19G/1.35G [00:08<00:01, 163MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 90%|█████████ | 1.22G/1.35G [00:08<00:00, 184MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 92%|█████████▏| 1.24G/1.35G [00:08<00:00, 203MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 94%|█████████▍| 1.27G/1.35G [00:08<00:00, 219MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 96%|█████████▌| 1.29G/1.35G [00:08<00:00, 118MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
" 98%|█████████▊| 1.32G/1.35G [00:09<00:00, 147MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|█████████▉| 1.34G/1.35G [00:09<00:00, 172MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r",
"100%|██████████| 1.35G/1.35G [00:09<00:00, 158MB/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"obj = sm.SummaryDetector(mydict)\n",
"summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n",
"# summary_model, summary_vis_processors = mutils.load_model(\"large\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:35:20.714623Z",
"iopub.status.busy": "2023-06-27T07:35:20.711987Z",
"iopub.status.idle": "2023-06-27T07:36:01.536992Z",
"shell.execute_reply": "2023-06-27T07:36:01.535824Z"
},
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "analyse_image() got an unexpected keyword argument 'summary_model'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_image\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43msummary_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msummary_vis_processors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_vis_processors\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mTypeError\u001b[0m: analyse_image() got an unexpected keyword argument 'summary_model'"
]
}
],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n",
" summary_model=summary_model, summary_vis_processors=summary_vis_processors\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"Convert the dictionary of dictionarys into a dictionary with lists:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.622130Z",
"iopub.status.busy": "2023-06-27T07:36:01.621477Z",
"iopub.status.idle": "2023-06-27T07:36:01.699370Z",
"shell.execute_reply": "2023-06-27T07:36:01.698646Z"
},
"tags": []
},
"outputs": [],
"source": [
"outdict = mutils.append_data_to_dict(mydict)\n",
"df = mutils.dump_df(outdict)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.705804Z",
"iopub.status.busy": "2023-06-27T07:36:01.705067Z",
"iopub.status.idle": "2023-06-27T07:36:01.826465Z",
"shell.execute_reply": "2023-06-27T07:36:01.825593Z"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>data/106349S_por.png</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>data/102141_2_eng.png</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>data/102730_eng.png</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename\n",
"0 data/106349S_por.png\n",
"1 data/102141_2_eng.png\n",
"2 data/102730_eng.png"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(10)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Write the csv file:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.840794Z",
"iopub.status.busy": "2023-06-27T07:36:01.840269Z",
"iopub.status.idle": "2023-06-27T07:36:01.882591Z",
"shell.execute_reply": "2023-06-27T07:36:01.881826Z"
}
},
"outputs": [],
"source": [
"df.to_csv(\"data_out.csv\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manually inspect the summaries\n",
"\n",
"To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n",
"\n",
"`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n",
"\n",
"`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.890620Z",
"iopub.status.busy": "2023-06-27T07:36:01.889777Z",
"iopub.status.idle": "2023-06-27T07:36:01.930378Z",
"shell.execute_reply": "2023-06-27T07:36:01.929566Z"
},
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "__init__() got an unexpected keyword argument 'identify'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
]
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate answers to free-form questions about images written in natural language. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Set the list of questions as a list of strings:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.938254Z",
"iopub.status.busy": "2023-06-27T07:36:01.937829Z",
"iopub.status.idle": "2023-06-27T07:36:01.941225Z",
"shell.execute_reply": "2023-06-27T07:36:01.940634Z"
}
},
"outputs": [],
"source": [
"list_of_questions = [\n",
" \"How many persons on the picture?\",\n",
" \"Are there any politicians in the picture?\",\n",
" \"Does the picture show something from medicine?\",\n",
"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Explore the analysis using the interface:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.946421Z",
"iopub.status.busy": "2023-06-27T07:36:01.945814Z",
"iopub.status.idle": "2023-06-27T07:36:01.983468Z",
"shell.execute_reply": "2023-06-27T07:36:01.982504Z"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "__init__() got an unexpected keyword argument 'identify'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
"\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
]
}
],
"source": [
"analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
"analysis_explorer.run_server(port=8055)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Or directly analyze for further processing\n",
"Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:36:01.988528Z",
"iopub.status.busy": "2023-06-27T07:36:01.988142Z",
"iopub.status.idle": "2023-06-27T07:37:53.205725Z",
"shell.execute_reply": "2023-06-27T07:37:53.189652Z"
}
},
"outputs": [],
"source": [
"for key in mydict:\n",
" mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert to dataframe and write csv\n",
"These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:37:53.312450Z",
"iopub.status.busy": "2023-06-27T07:37:53.309423Z",
"iopub.status.idle": "2023-06-27T07:37:53.381447Z",
"shell.execute_reply": "2023-06-27T07:37:53.380670Z"
}
},
"outputs": [],
"source": [
"outdict2 = mutils.append_data_to_dict(mydict)\n",
"df2 = mutils.dump_df(outdict2)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:37:53.387599Z",
"iopub.status.busy": "2023-06-27T07:37:53.387346Z",
"iopub.status.idle": "2023-06-27T07:37:53.465658Z",
"shell.execute_reply": "2023-06-27T07:37:53.464807Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>filename</th>\n",
" <th>How many persons on the picture?</th>\n",
" <th>Are there any politicians in the picture?</th>\n",
" <th>Does the picture show something from medicine?</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>data/106349S_por.png</td>\n",
" <td>1</td>\n",
" <td>yes</td>\n",
" <td>yes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>data/102141_2_eng.png</td>\n",
" <td>1</td>\n",
" <td>no</td>\n",
" <td>yes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>data/102730_eng.png</td>\n",
" <td>2</td>\n",
" <td>no</td>\n",
" <td>yes</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" filename How many persons on the picture? \\\n",
"0 data/106349S_por.png 1 \n",
"1 data/102141_2_eng.png 1 \n",
"2 data/102730_eng.png 2 \n",
"\n",
" Are there any politicians in the picture? \\\n",
"0 yes \n",
"1 no \n",
"2 no \n",
"\n",
" Does the picture show something from medicine? \n",
"0 yes \n",
"1 yes \n",
"2 yes "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2023-06-27T07:37:53.489195Z",
"iopub.status.busy": "2023-06-27T07:37:53.488569Z",
"iopub.status.idle": "2023-06-27T07:37:53.502358Z",
"shell.execute_reply": "2023-06-27T07:37:53.501705Z"
}
},
"outputs": [],
"source": [
"df2.to_csv(\"data_out2.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"vscode": {
"interpreter": {
"hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}