зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-30 21:46:04 +02:00 
			
		
		
		
	 2891c8a6ed
			
		
	
	
		2891c8a6ed
		
			
		
	
	
	
	
		
			
			* add image summary notebook * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * pin deepface version to avoid bug with progress bar after update * update actions version for checkout and python * test ci without lavis * no lavis for ci test * merging * return lavis * change lavis to salesforce-lavis * change pycocotools install method * change pycocotools install method * fix_pycocotools * Downgrade Python * back to 3.9 and remove pycocotools dependance * instrucctions for windows * missing comma after merge * lavis only for ubuntu * use lavis package name in install instead of git * adding multimodal searching py and notebook * exclude lavis on windows * skip import on windows * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reactivate lavis * Revert "reactivate lavis" This reverts commit ecdaf9d316e4b08816ba62da5e0482c8ff15b14e. * Change input format for multimodal search * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix clip models * account for new interface in init imports * changed imports bec of lavis/windows * fix if-else, added clip ViT-L-14=336 model * fix code smells * add model change function to summary * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed new model in summary.py * fixed summary windget * moved some function to utils * fixed imort torch in utils * added test_summary.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed opencv version * added first test of multimodal_search.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed test * removed windows in CI and added test in multimodal search * change lavis from dependencies from pip ro git * fixed blip2 model in test_multimodal_search.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed test multimodal search on cpu and gpu machines * added test, fixed dependencies * add -vv to pytest command in CI * added test_multimodal_search tests * fixed tests in test_multimodal_search.py * fixed tests in test_summary * changed CI and fixed test_multimodel search * fixed ci * fixed error in test multimodal search, changed ci * added multimodal search test, added windows CI, added picture in test data * CI debuging * fixing tests in CI * fixing test in CI 2 * fixing CI 3 * fixing CI * added filtering function * Brought back all tests after CI fixing * changed CI one pytest by individual tests * fixed opencv problem * fix path for text, adjust result for new gcv * remove opencv * fixing cv2 error * added opencv-contrib, change objects_cvlib * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing tests in CI * fixing CI testing * cleanup objects * fixing codecov in CI * fixing codecov in CI * run tests together; install opencv last * update requirements for opencv dependencies * moved lavis functions from utils to summary * Remove lavis from utils.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add missing jupyter --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: iulusoy <inga.ulusoy@uni-heidelberg.de>
		
			
				
	
	
		
			105 строки
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			105 строки
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from misinformation.utils import AnalysisMethod
 | |
| from torch import device, cuda, no_grad
 | |
| from PIL import Image
 | |
| from lavis.models import load_model_and_preprocess
 | |
| 
 | |
| 
 | |
| class SummaryDetector(AnalysisMethod):
 | |
|     def __init__(self, subdict: dict) -> None:
 | |
|         super().__init__(subdict)
 | |
| 
 | |
|     summary_device = device("cuda" if cuda.is_available() else "cpu")
 | |
|     summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|         name="blip_caption",
 | |
|         model_type="base_coco",
 | |
|         is_eval=True,
 | |
|         device=summary_device,
 | |
|     )
 | |
| 
 | |
|     def load_model_base(self):
 | |
|         summary_device = device("cuda" if cuda.is_available() else "cpu")
 | |
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|             name="blip_caption",
 | |
|             model_type="base_coco",
 | |
|             is_eval=True,
 | |
|             device=summary_device,
 | |
|         )
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_model_large(self):
 | |
|         summary_device = device("cuda" if cuda.is_available() else "cpu")
 | |
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|             name="blip_caption",
 | |
|             model_type="large_coco",
 | |
|             is_eval=True,
 | |
|             device=summary_device,
 | |
|         )
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_model(self, model_type):
 | |
|         select_model = {
 | |
|             "base": SummaryDetector.load_model_base,
 | |
|             "large": SummaryDetector.load_model_large,
 | |
|         }
 | |
|         summary_model, summary_vis_processors = select_model[model_type](self)
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def analyse_image(self, summary_model=None, summary_vis_processors=None):
 | |
| 
 | |
|         if summary_model is None and summary_vis_processors is None:
 | |
|             summary_model = SummaryDetector.summary_model
 | |
|             summary_vis_processors = SummaryDetector.summary_vis_processors
 | |
| 
 | |
|         path = self.subdict["filename"]
 | |
|         raw_image = Image.open(path).convert("RGB")
 | |
|         image = (
 | |
|             summary_vis_processors["eval"](raw_image)
 | |
|             .unsqueeze(0)
 | |
|             .to(self.summary_device)
 | |
|         )
 | |
|         with no_grad():
 | |
|             self.subdict["const_image_summary"] = summary_model.generate(
 | |
|                 {"image": image}
 | |
|             )[0]
 | |
|             self.subdict["3_non-deterministic summary"] = summary_model.generate(
 | |
|                 {"image": image}, use_nucleus_sampling=True, num_captions=3
 | |
|             )
 | |
|         return self.subdict
 | |
| 
 | |
|     (
 | |
|         summary_VQA_model,
 | |
|         summary_VQA_vis_processors,
 | |
|         summary_VQA_txt_processors,
 | |
|     ) = load_model_and_preprocess(
 | |
|         name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device
 | |
|     )
 | |
| 
 | |
|     def analyse_questions(self, list_of_questions):
 | |
| 
 | |
|         if len(list_of_questions) > 0:
 | |
|             path = self.subdict["filename"]
 | |
|             raw_image = Image.open(path).convert("RGB")
 | |
|             image = (
 | |
|                 self.summary_VQA_vis_processors["eval"](raw_image)
 | |
|                 .unsqueeze(0)
 | |
|                 .to(self.summary_device)
 | |
|             )
 | |
|             question_batch = []
 | |
|             for quest in list_of_questions:
 | |
|                 question_batch.append(self.summary_VQA_txt_processors["eval"](quest))
 | |
|             batch_size = len(list_of_questions)
 | |
|             image_batch = image.repeat(batch_size, 1, 1, 1)
 | |
| 
 | |
|             with no_grad():
 | |
|                 answers_batch = self.summary_VQA_model.predict_answers(
 | |
|                     samples={"image": image_batch, "text_input": question_batch},
 | |
|                     inference_method="generate",
 | |
|                 )
 | |
| 
 | |
|             for q, a in zip(list_of_questions, answers_batch):
 | |
|                 self.subdict[q] = a
 | |
| 
 | |
|         else:
 | |
|             print("Please, enter list of questions")
 | |
|         return self.subdict
 |