зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-11-04 16:06:05 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			77 строки
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 строки
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from misinformation.utils import AnalysisMethod
 | 
						|
import torch
 | 
						|
from PIL import Image
 | 
						|
from lavis.models import load_model_and_preprocess
 | 
						|
 | 
						|
 | 
						|
class SummaryDetector(AnalysisMethod):
 | 
						|
    def __init__(self, subdict: dict) -> None:
 | 
						|
        super().__init__(subdict)
 | 
						|
 | 
						|
    summary_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
						|
    summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | 
						|
        name="blip_caption",
 | 
						|
        model_type="base_coco",
 | 
						|
        is_eval=True,
 | 
						|
        device=summary_device,
 | 
						|
    )
 | 
						|
 | 
						|
    def analyse_image(self, summary_model=None, summary_vis_processors=None):
 | 
						|
 | 
						|
        if summary_model is None and summary_vis_processors is None:
 | 
						|
            summary_model = SummaryDetector.summary_model
 | 
						|
            summary_vis_processors = SummaryDetector.summary_vis_processors
 | 
						|
 | 
						|
        path = self.subdict["filename"]
 | 
						|
        raw_image = Image.open(path).convert("RGB")
 | 
						|
        image = (
 | 
						|
            summary_vis_processors["eval"](raw_image)
 | 
						|
            .unsqueeze(0)
 | 
						|
            .to(self.summary_device)
 | 
						|
        )
 | 
						|
        with torch.no_grad():
 | 
						|
            self.subdict["const_image_summary"] = summary_model.generate(
 | 
						|
                {"image": image}
 | 
						|
            )[0]
 | 
						|
            self.subdict["3_non-deterministic summary"] = summary_model.generate(
 | 
						|
                {"image": image}, use_nucleus_sampling=True, num_captions=3
 | 
						|
            )
 | 
						|
        return self.subdict
 | 
						|
 | 
						|
    (
 | 
						|
        summary_VQA_model,
 | 
						|
        summary_VQA_vis_processors,
 | 
						|
        summary_VQA_txt_processors,
 | 
						|
    ) = load_model_and_preprocess(
 | 
						|
        name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device
 | 
						|
    )
 | 
						|
 | 
						|
    def analyse_questions(self, list_of_questions):
 | 
						|
 | 
						|
        if len(list_of_questions) > 0:
 | 
						|
            path = self.subdict["filename"]
 | 
						|
            raw_image = Image.open(path).convert("RGB")
 | 
						|
            image = (
 | 
						|
                self.summary_VQA_vis_processors["eval"](raw_image)
 | 
						|
                .unsqueeze(0)
 | 
						|
                .to(self.summary_device)
 | 
						|
            )
 | 
						|
            question_batch = []
 | 
						|
            for quest in list_of_questions:
 | 
						|
                question_batch.append(self.summary_VQA_txt_processors["eval"](quest))
 | 
						|
            batch_size = len(list_of_questions)
 | 
						|
            image_batch = image.repeat(batch_size, 1, 1, 1)
 | 
						|
 | 
						|
            with torch.no_grad():
 | 
						|
                answers_batch = self.summary_VQA_model.predict_answers(
 | 
						|
                    samples={"image": image_batch, "text_input": question_batch},
 | 
						|
                    inference_method="generate",
 | 
						|
                )
 | 
						|
 | 
						|
            for q, a in zip(list_of_questions, answers_batch):
 | 
						|
                self.subdict[q] = a
 | 
						|
 | 
						|
        else:
 | 
						|
            print("Please, enter list of questions")
 | 
						|
        return self.subdict
 |