зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-31 22:16:05 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2092 строки
		
	
	
		
			50 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			2092 строки
		
	
	
		
			50 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Image summary and visual question answering"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "This notebooks shows how to generate image captions and use the visual question answering with [LAVIS](https://github.com/salesforce/LAVIS). \n",
 | |
|     "\n",
 | |
|     "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
 | |
|     "\n",
 | |
|     "After that, we can import `ammico` and read in the files given a folder path."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:15:15.869373Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:15:15.868830Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:15:15.880408Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:15:15.879864Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# if running on google colab\n",
 | |
|     "# flake8-noqa-cell\n",
 | |
|     "import os\n",
 | |
|     "\n",
 | |
|     "if \"google.colab\" in str(get_ipython()):\n",
 | |
|     "    # update python version\n",
 | |
|     "    # install setuptools\n",
 | |
|     "    # %pip install setuptools==61 -qqq\n",
 | |
|     "    # install ammico\n",
 | |
|     "    %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
 | |
|     "    # mount google drive for data and API key\n",
 | |
|     "    from google.colab import drive\n",
 | |
|     "\n",
 | |
|     "    drive.mount(\"/content/drive\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:15:15.884713Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:15:15.883580Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:15:27.576198Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:15:27.575450Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import ammico\n",
 | |
|     "from ammico import utils as mutils\n",
 | |
|     "from ammico import display as mdisplay\n",
 | |
|     "import ammico.summary as sm"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:15:27.580324Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:15:27.579544Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:15:27.584950Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:15:27.584254Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# Here you need to provide the path to your google drive folder\n",
 | |
|     "# or local folder containing the images\n",
 | |
|     "images = mutils.find_files(\n",
 | |
|     "    path=\"data/\",\n",
 | |
|     "    limit=10,\n",
 | |
|     ")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:15:27.588006Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:15:27.587579Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:15:27.591065Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:15:27.590372Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "mydict = mutils.initialize_dict(images)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Create captions for images and directly write to csv"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Here you can choose between two models: \"base\" or \"large\". This will generate the caption for each image and directly put the results in a dataframe. This dataframe can be exported as a csv file.\n",
 | |
|     "\n",
 | |
|     "The results are written into the columns `const_image_summary` - this will always be the same result (as always the same seed will be used). The column `3_non-deterministic summary` displays three different answers generated with different seeds, these are most likely different when you run the analysis again."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:15:27.594466Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:15:27.593922Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:16:40.172662Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:16:40.168499Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  0%|          | 0.00/2.50G [00:00<?, ?B/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  0%|          | 8.01M/2.50G [00:00<00:42, 62.6MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 24.0M/2.50G [00:00<00:25, 103MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  2%|▏         | 40.0M/2.50G [00:00<00:22, 120MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  2%|▏         | 56.0M/2.50G [00:00<00:19, 134MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  3%|▎         | 72.0M/2.50G [00:00<00:18, 138MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  3%|▎         | 88.0M/2.50G [00:00<00:18, 143MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  4%|▍         | 106M/2.50G [00:00<00:16, 158MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  5%|▍         | 125M/2.50G [00:00<00:15, 170MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  6%|▌         | 147M/2.50G [00:01<00:13, 188MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  7%|▋         | 175M/2.50G [00:01<00:11, 219MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  8%|▊         | 196M/2.50G [00:01<00:11, 215MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  9%|▉         | 227M/2.50G [00:01<00:09, 245MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 10%|▉         | 252M/2.50G [00:01<00:09, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 11%|█         | 279M/2.50G [00:01<00:10, 235MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 12%|█▏        | 307M/2.50G [00:01<00:09, 251MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 13%|█▎        | 332M/2.50G [00:01<00:11, 206MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 14%|█▍        | 361M/2.50G [00:01<00:10, 230MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 15%|█▌        | 388M/2.50G [00:02<00:09, 246MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 16%|█▋        | 418M/2.50G [00:02<00:08, 264MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 17%|█▋        | 448M/2.50G [00:02<00:08, 276MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 19%|█▊        | 475M/2.50G [00:02<00:08, 266MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 20%|█▉        | 501M/2.50G [00:02<00:12, 173MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 21%|██        | 528M/2.50G [00:02<00:10, 196MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 21%|██▏       | 551M/2.50G [00:03<00:16, 125MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 22%|██▏       | 576M/2.50G [00:03<00:14, 148MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 23%|██▎       | 600M/2.50G [00:03<00:12, 168MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 24%|██▍       | 621M/2.50G [00:03<00:13, 153MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 25%|██▍       | 639M/2.50G [00:04<00:28, 71.6MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 25%|██▌       | 653M/2.50G [00:04<00:31, 63.4MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 26%|██▌       | 664M/2.50G [00:04<00:29, 67.5MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 27%|██▋       | 679M/2.50G [00:04<00:24, 81.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 27%|██▋       | 691M/2.50G [00:04<00:26, 74.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 28%|██▊       | 712M/2.50G [00:05<00:19, 98.5MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 28%|██▊       | 725M/2.50G [00:05<00:18, 106MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 29%|██▉       | 738M/2.50G [00:05<00:17, 109MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 30%|██▉       | 765M/2.50G [00:05<00:12, 149MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 31%|███       | 790M/2.50G [00:05<00:10, 176MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 32%|███▏      | 819M/2.50G [00:05<00:08, 210MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 33%|███▎      | 848M/2.50G [00:05<00:07, 235MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 34%|███▍      | 877M/2.50G [00:05<00:07, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 35%|███▌      | 905M/2.50G [00:05<00:06, 266MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 36%|███▋      | 933M/2.50G [00:05<00:06, 272MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 37%|███▋      | 960M/2.50G [00:06<00:06, 278MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 39%|███▊      | 989M/2.50G [00:06<00:05, 286MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 40%|███▉      | 0.99G/2.50G [00:06<00:05, 290MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 41%|████      | 1.02G/2.50G [00:06<00:06, 243MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 42%|████▏     | 1.05G/2.50G [00:06<00:06, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 43%|████▎     | 1.08G/2.50G [00:06<00:05, 266MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 44%|████▍     | 1.10G/2.50G [00:06<00:07, 215MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 45%|████▌     | 1.13G/2.50G [00:06<00:06, 235MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 46%|████▋     | 1.16G/2.50G [00:07<00:05, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 47%|████▋     | 1.18G/2.50G [00:07<00:06, 234MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 48%|████▊     | 1.21G/2.50G [00:07<00:05, 248MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 49%|████▉     | 1.24G/2.50G [00:07<00:05, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 50%|█████     | 1.26G/2.50G [00:07<00:11, 117MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 51%|█████▏    | 1.29G/2.50G [00:08<00:09, 141MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 52%|█████▏    | 1.31G/2.50G [00:08<00:07, 162MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 53%|█████▎    | 1.34G/2.50G [00:08<00:08, 141MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 54%|█████▍    | 1.36G/2.50G [00:08<00:07, 154MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 55%|█████▌    | 1.38G/2.50G [00:09<00:14, 82.5MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 56%|█████▌    | 1.39G/2.50G [00:09<00:13, 87.2MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 56%|█████▌    | 1.41G/2.50G [00:09<00:12, 94.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 57%|█████▋    | 1.42G/2.50G [00:09<00:12, 96.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 57%|█████▋    | 1.43G/2.50G [00:09<00:19, 57.8MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 58%|█████▊    | 1.45G/2.50G [00:10<00:16, 70.1MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 58%|█████▊    | 1.46G/2.50G [00:10<00:12, 91.3MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 59%|█████▉    | 1.49G/2.50G [00:10<00:09, 116MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 60%|█████▉    | 1.50G/2.50G [00:10<00:08, 128MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 61%|██████    | 1.53G/2.50G [00:10<00:06, 163MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 62%|██████▏   | 1.55G/2.50G [00:10<00:05, 194MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 63%|██████▎   | 1.58G/2.50G [00:10<00:05, 189MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 64%|██████▍   | 1.60G/2.50G [00:10<00:04, 211MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 65%|██████▍   | 1.63G/2.50G [00:10<00:04, 211MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 66%|██████▌   | 1.65G/2.50G [00:11<00:03, 237MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 67%|██████▋   | 1.68G/2.50G [00:11<00:04, 180MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 68%|██████▊   | 1.70G/2.50G [00:11<00:04, 187MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 69%|██████▊   | 1.72G/2.50G [00:11<00:04, 205MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 70%|██████▉   | 1.75G/2.50G [00:11<00:03, 223MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 71%|███████   | 1.78G/2.50G [00:11<00:03, 247MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 72%|███████▏  | 1.80G/2.50G [00:11<00:02, 259MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 73%|███████▎  | 1.83G/2.50G [00:12<00:08, 83.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 74%|███████▍  | 1.86G/2.50G [00:12<00:06, 108MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 75%|███████▍  | 1.88G/2.50G [00:12<00:05, 123MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 76%|███████▌  | 1.90G/2.50G [00:15<00:23, 27.4MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 76%|███████▋  | 1.91G/2.50G [00:15<00:19, 32.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 77%|███████▋  | 1.93G/2.50G [00:15<00:16, 37.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 78%|███████▊  | 1.94G/2.50G [00:15<00:12, 47.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 78%|███████▊  | 1.96G/2.50G [00:18<00:32, 18.4MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 78%|███████▊  | 1.96G/2.50G [00:18<00:27, 21.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 79%|███████▉  | 1.97G/2.50G [00:18<00:23, 24.6MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 79%|███████▉  | 1.98G/2.50G [00:18<00:19, 29.3MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 80%|███████▉  | 2.00G/2.50G [00:18<00:13, 41.1MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 80%|████████  | 2.01G/2.50G [00:18<00:11, 46.6MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 81%|████████  | 2.02G/2.50G [00:18<00:09, 55.7MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 81%|████████  | 2.03G/2.50G [00:18<00:07, 68.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 82%|████████▏ | 2.05G/2.50G [00:19<00:05, 92.4MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 82%|████████▏ | 2.06G/2.50G [00:19<00:04, 108MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 83%|████████▎ | 2.08G/2.50G [00:19<00:03, 132MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 84%|████████▍ | 2.10G/2.50G [00:19<00:02, 153MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 85%|████████▍ | 2.12G/2.50G [00:19<00:02, 157MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 86%|████████▌ | 2.15G/2.50G [00:19<00:02, 191MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 86%|████████▋ | 2.17G/2.50G [00:19<00:01, 187MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 87%|████████▋ | 2.19G/2.50G [00:19<00:01, 199MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 88%|████████▊ | 2.21G/2.50G [00:19<00:01, 198MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 89%|████████▉ | 2.23G/2.50G [00:19<00:01, 206MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 90%|█████████ | 2.25G/2.50G [00:20<00:01, 231MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 91%|█████████ | 2.28G/2.50G [00:20<00:01, 207MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 92%|█████████▏| 2.30G/2.50G [00:20<00:01, 193MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 92%|█████████▏| 2.31G/2.50G [00:22<00:06, 30.2MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 93%|█████████▎| 2.33G/2.50G [00:22<00:05, 33.7MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 93%|█████████▎| 2.34G/2.50G [00:22<00:04, 38.8MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 94%|█████████▍| 2.35G/2.50G [00:22<00:03, 47.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 94%|█████████▍| 2.36G/2.50G [00:23<00:02, 54.1MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 95%|█████████▍| 2.38G/2.50G [00:23<00:02, 64.6MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 95%|█████████▌| 2.39G/2.50G [00:23<00:01, 79.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 96%|█████████▌| 2.41G/2.50G [00:23<00:01, 96.2MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 97%|█████████▋| 2.43G/2.50G [00:23<00:00, 119MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 98%|█████████▊| 2.45G/2.50G [00:23<00:00, 160MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 99%|█████████▉| 2.47G/2.50G [00:23<00:00, 165MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 99%|█████████▉| 2.49G/2.50G [00:23<00:00, 164MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "100%|██████████| 2.50G/2.50G [00:23<00:00, 113MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  0%|          | 0.00/1.35G [00:00<?, ?B/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 8.01M/1.35G [00:00<00:25, 56.9MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  1%|          | 16.0M/1.35G [00:00<00:21, 68.0MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  2%|▏         | 32.0M/1.35G [00:00<00:13, 103MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  4%|▎         | 49.2M/1.35G [00:00<00:10, 131MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  5%|▍         | 64.0M/1.35G [00:00<00:10, 138MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  6%|▌         | 77.7M/1.35G [00:00<00:09, 140MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  7%|▋         | 96.7M/1.35G [00:00<00:08, 159MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "  8%|▊         | 116M/1.35G [00:00<00:07, 174MB/s] "
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 10%|█         | 142M/1.35G [00:00<00:06, 204MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 12%|█▏        | 168M/1.35G [00:01<00:05, 225MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 14%|█▍        | 193M/1.35G [00:01<00:05, 236MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 16%|█▌        | 218M/1.35G [00:01<00:04, 244MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 18%|█▊        | 248M/1.35G [00:01<00:04, 263MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 20%|█▉        | 273M/1.35G [00:01<00:04, 265MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 22%|██▏       | 299M/1.35G [00:01<00:04, 256MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 23%|██▎       | 323M/1.35G [00:01<00:04, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 25%|██▌       | 348M/1.35G [00:01<00:04, 256MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 27%|██▋       | 373M/1.35G [00:01<00:04, 259MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 29%|██▉       | 398M/1.35G [00:01<00:03, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 31%|███       | 424M/1.35G [00:02<00:03, 262MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 33%|███▎      | 449M/1.35G [00:02<00:03, 254MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 34%|███▍      | 473M/1.35G [00:02<00:03, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 36%|███▌      | 498M/1.35G [00:02<00:03, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 38%|███▊      | 522M/1.35G [00:02<00:03, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 40%|███▉      | 547M/1.35G [00:02<00:03, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 41%|████▏     | 571M/1.35G [00:02<00:03, 247MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 43%|████▎     | 595M/1.35G [00:02<00:03, 247MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 45%|████▍     | 620M/1.35G [00:02<00:03, 252MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 47%|████▋     | 644M/1.35G [00:03<00:03, 250MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 49%|████▉     | 673M/1.35G [00:03<00:02, 266MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 51%|█████     | 699M/1.35G [00:03<00:02, 267MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 53%|█████▎    | 724M/1.35G [00:03<00:02, 258MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 54%|█████▍    | 750M/1.35G [00:03<00:02, 261MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 56%|█████▌    | 775M/1.35G [00:03<00:02, 261MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 58%|█████▊    | 800M/1.35G [00:03<00:02, 258MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 60%|█████▉    | 824M/1.35G [00:03<00:02, 257MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 62%|██████▏   | 849M/1.35G [00:03<00:02, 254MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 63%|██████▎   | 873M/1.35G [00:03<00:02, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 65%|██████▌   | 898M/1.35G [00:04<00:01, 257MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 67%|██████▋   | 923M/1.35G [00:04<00:01, 259MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 69%|██████▉   | 948M/1.35G [00:04<00:01, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 71%|███████   | 973M/1.35G [00:04<00:01, 259MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 72%|███████▏  | 998M/1.35G [00:04<00:01, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 74%|███████▍  | 1.00G/1.35G [00:04<00:01, 262MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 76%|███████▌  | 1.02G/1.35G [00:04<00:01, 261MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 78%|███████▊  | 1.05G/1.35G [00:04<00:01, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 80%|███████▉  | 1.07G/1.35G [00:04<00:01, 253MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 81%|████████▏ | 1.10G/1.35G [00:04<00:01, 256MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 83%|████████▎ | 1.12G/1.35G [00:05<00:00, 258MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 85%|████████▌ | 1.15G/1.35G [00:05<00:00, 259MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 87%|████████▋ | 1.17G/1.35G [00:05<00:00, 260MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 89%|████████▊ | 1.19G/1.35G [00:05<00:00, 261MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 91%|█████████ | 1.22G/1.35G [00:05<00:00, 261MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 92%|█████████▏| 1.24G/1.35G [00:05<00:00, 263MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 94%|█████████▍| 1.27G/1.35G [00:05<00:00, 263MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 96%|█████████▌| 1.29G/1.35G [00:05<00:00, 263MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       " 98%|█████████▊| 1.32G/1.35G [00:05<00:00, 252MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "100%|█████████▉| 1.34G/1.35G [00:05<00:00, 255MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\r",
 | |
|       "100%|██████████| 1.35G/1.35G [00:05<00:00, 242MB/s]"
 | |
|      ]
 | |
|     },
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "obj = sm.SummaryDetector(mydict)\n",
 | |
|     "summary_model, summary_vis_processors = obj.load_model(model_type=\"base\")\n",
 | |
|     "# summary_model, summary_vis_processors = mutils.load_model(\"large\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:16:40.242070Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:16:40.241013Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.045870Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.044528Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "ename": "TypeError",
 | |
|      "evalue": "analyse_image() got an unexpected keyword argument 'summary_model'",
 | |
|      "output_type": "error",
 | |
|      "traceback": [
 | |
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
 | |
|       "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
 | |
|       "Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m mydict:\n\u001b[0;32m----> 2\u001b[0m     mydict[key] \u001b[38;5;241m=\u001b[39m \u001b[43msm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSummaryDetector\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse_image\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m      3\u001b[0m \u001b[43m        \u001b[49m\u001b[43msummary_model\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msummary_vis_processors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msummary_vis_processors\u001b[49m\n\u001b[1;32m      4\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
 | |
|       "\u001b[0;31mTypeError\u001b[0m: analyse_image() got an unexpected keyword argument 'summary_model'"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "for key in mydict:\n",
 | |
|     "    mydict[key] = sm.SummaryDetector(mydict[key]).analyse_image(\n",
 | |
|     "        summary_model=summary_model, summary_vis_processors=summary_vis_processors\n",
 | |
|     "    )"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {
 | |
|     "tags": []
 | |
|    },
 | |
|    "source": [
 | |
|     "Convert the dictionary of dictionarys into a dictionary with lists:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.116389Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.115755Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.201902Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.201122Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "outdict = mutils.append_data_to_dict(mydict)\n",
 | |
|     "df = mutils.dump_df(outdict)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Check the dataframe:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 8,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.209403Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.208643Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.380663Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.379447Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/html": [
 | |
|        "<div>\n",
 | |
|        "<style scoped>\n",
 | |
|        "    .dataframe tbody tr th:only-of-type {\n",
 | |
|        "        vertical-align: middle;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe tbody tr th {\n",
 | |
|        "        vertical-align: top;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe thead th {\n",
 | |
|        "        text-align: right;\n",
 | |
|        "    }\n",
 | |
|        "</style>\n",
 | |
|        "<table border=\"1\" class=\"dataframe\">\n",
 | |
|        "  <thead>\n",
 | |
|        "    <tr style=\"text-align: right;\">\n",
 | |
|        "      <th></th>\n",
 | |
|        "      <th>filename</th>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </thead>\n",
 | |
|        "  <tbody>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>0</th>\n",
 | |
|        "      <td>data/102141_2_eng.png</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>1</th>\n",
 | |
|        "      <td>data/106349S_por.png</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>2</th>\n",
 | |
|        "      <td>data/102730_eng.png</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </tbody>\n",
 | |
|        "</table>\n",
 | |
|        "</div>"
 | |
|       ],
 | |
|       "text/plain": [
 | |
|        "                filename\n",
 | |
|        "0  data/102141_2_eng.png\n",
 | |
|        "1   data/106349S_por.png\n",
 | |
|        "2    data/102730_eng.png"
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 8,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "df.head(10)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Write the csv file:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 9,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.400724Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.400347Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.446268Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.445457Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "df.to_csv(\"data_out.csv\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Manually inspect the summaries\n",
 | |
|     "\n",
 | |
|     "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing.\n",
 | |
|     "\n",
 | |
|     "`const_image_summary` - the permanent summarys, which does not change from run to run (analyse_image).\n",
 | |
|     "\n",
 | |
|     "`3_non-deterministic summary` - 3 different summarys examples that change from run to run (analyse_image). "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 10,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.457026Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.456349Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.505670Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.504858Z"
 | |
|     },
 | |
|     "tags": []
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "ename": "TypeError",
 | |
|      "evalue": "__init__() got an unexpected keyword argument 'identify'",
 | |
|      "output_type": "error",
 | |
|      "traceback": [
 | |
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
 | |
|       "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
 | |
|       "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
 | |
|       "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
 | |
|     "analysis_explorer.run_server(port=8055)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Generate answers to free-form questions about images written in natural language. "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Set the list of questions as a list of strings:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 11,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.513172Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.512915Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.516262Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.515567Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "list_of_questions = [\n",
 | |
|     "    \"How many persons on the picture?\",\n",
 | |
|     "    \"Are there any politicians in the picture?\",\n",
 | |
|     "    \"Does the picture show something from medicine?\",\n",
 | |
|     "]"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Explore the analysis using the interface:"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 12,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.522018Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.521409Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:17:22.564237Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:17:22.563271Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "ename": "TypeError",
 | |
|      "evalue": "__init__() got an unexpected keyword argument 'identify'",
 | |
|      "output_type": "error",
 | |
|      "traceback": [
 | |
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
 | |
|       "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
 | |
|       "Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m analysis_explorer \u001b[38;5;241m=\u001b[39m \u001b[43mmdisplay\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAnalysisExplorer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmydict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43midentify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msummary\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      2\u001b[0m analysis_explorer\u001b[38;5;241m.\u001b[39mrun_server(port\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8055\u001b[39m)\n",
 | |
|       "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'identify'"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"summary\")\n",
 | |
|     "analysis_explorer.run_server(port=8055)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Or directly analyze for further processing\n",
 | |
|     "Instead of inspecting each of the images, you can also directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 13,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:17:22.572925Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:17:22.572413Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:19:12.624557Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:19:12.621474Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "for key in mydict:\n",
 | |
|     "    mydict[key] = sm.SummaryDetector(mydict[key]).analyse_questions(list_of_questions)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "attachments": {},
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Convert to dataframe and write csv\n",
 | |
|     "These steps are required to convert the dictionary of dictionarys into a dictionary with lists, that can be converted into a pandas dataframe and exported to a csv file."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 14,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:19:12.655963Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:19:12.655626Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:19:12.673902Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:19:12.672593Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "outdict2 = mutils.append_data_to_dict(mydict)\n",
 | |
|     "df2 = mutils.dump_df(outdict2)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 15,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:19:12.679448Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:19:12.678774Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:19:12.727513Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:19:12.726494Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "data": {
 | |
|       "text/html": [
 | |
|        "<div>\n",
 | |
|        "<style scoped>\n",
 | |
|        "    .dataframe tbody tr th:only-of-type {\n",
 | |
|        "        vertical-align: middle;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe tbody tr th {\n",
 | |
|        "        vertical-align: top;\n",
 | |
|        "    }\n",
 | |
|        "\n",
 | |
|        "    .dataframe thead th {\n",
 | |
|        "        text-align: right;\n",
 | |
|        "    }\n",
 | |
|        "</style>\n",
 | |
|        "<table border=\"1\" class=\"dataframe\">\n",
 | |
|        "  <thead>\n",
 | |
|        "    <tr style=\"text-align: right;\">\n",
 | |
|        "      <th></th>\n",
 | |
|        "      <th>filename</th>\n",
 | |
|        "      <th>How many persons on the picture?</th>\n",
 | |
|        "      <th>Are there any politicians in the picture?</th>\n",
 | |
|        "      <th>Does the picture show something from medicine?</th>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </thead>\n",
 | |
|        "  <tbody>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>0</th>\n",
 | |
|        "      <td>data/102141_2_eng.png</td>\n",
 | |
|        "      <td>1</td>\n",
 | |
|        "      <td>no</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>1</th>\n",
 | |
|        "      <td>data/106349S_por.png</td>\n",
 | |
|        "      <td>1</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "    <tr>\n",
 | |
|        "      <th>2</th>\n",
 | |
|        "      <td>data/102730_eng.png</td>\n",
 | |
|        "      <td>2</td>\n",
 | |
|        "      <td>no</td>\n",
 | |
|        "      <td>yes</td>\n",
 | |
|        "    </tr>\n",
 | |
|        "  </tbody>\n",
 | |
|        "</table>\n",
 | |
|        "</div>"
 | |
|       ],
 | |
|       "text/plain": [
 | |
|        "                filename How many persons on the picture?  \\\n",
 | |
|        "0  data/102141_2_eng.png                                1   \n",
 | |
|        "1   data/106349S_por.png                                1   \n",
 | |
|        "2    data/102730_eng.png                                2   \n",
 | |
|        "\n",
 | |
|        "  Are there any politicians in the picture?  \\\n",
 | |
|        "0                                        no   \n",
 | |
|        "1                                       yes   \n",
 | |
|        "2                                        no   \n",
 | |
|        "\n",
 | |
|        "  Does the picture show something from medicine?  \n",
 | |
|        "0                                            yes  \n",
 | |
|        "1                                            yes  \n",
 | |
|        "2                                            yes  "
 | |
|       ]
 | |
|      },
 | |
|      "execution_count": 15,
 | |
|      "metadata": {},
 | |
|      "output_type": "execute_result"
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "df2.head(10)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 16,
 | |
|    "metadata": {
 | |
|     "execution": {
 | |
|      "iopub.execute_input": "2023-07-03T12:19:12.734953Z",
 | |
|      "iopub.status.busy": "2023-07-03T12:19:12.734695Z",
 | |
|      "iopub.status.idle": "2023-07-03T12:19:12.743683Z",
 | |
|      "shell.execute_reply": "2023-07-03T12:19:12.743065Z"
 | |
|     }
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "df2.to_csv(\"data_out2.csv\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.9.17"
 | |
|   },
 | |
|   "vscode": {
 | |
|    "interpreter": {
 | |
|     "hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
 | |
|    }
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 4
 | |
| }
 | 
