AMMICO/ammico/summary.py
Petr Andriushchenko fe1e937f18
Documentation update (#160)
* Changed README.md

* Changed docs notebooks

---------

Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
2023-10-30 16:18:07 +01:00

642 строки
25 KiB
Python

from ammico.utils import AnalysisMethod
from torch import cuda, no_grad
from PIL import Image
from lavis.models import load_model_and_preprocess
from typing import Optional
class SummaryDetector(AnalysisMethod):
allowed_model_types = [
"base",
"large",
"vqa",
]
allowed_new_model_types = [
"blip2_t5_pretrain_flant5xxl",
"blip2_t5_pretrain_flant5xl",
"blip2_t5_caption_coco_flant5xl",
"blip2_opt_pretrain_opt2.7b",
"blip2_opt_pretrain_opt6.7b",
"blip2_opt_caption_coco_opt2.7b",
"blip2_opt_caption_coco_opt6.7b",
]
all_allowed_model_types = allowed_model_types + allowed_new_model_types
allowed_analysis_types = ["summary", "questions", "summary_and_questions"]
def __init__(
self,
subdict: dict = {},
model_type: str = "base",
analysis_type: str = "summary_and_questions",
list_of_questions: Optional[list[str]] = None,
summary_model=None,
summary_vis_processors=None,
summary_vqa_model=None,
summary_vqa_vis_processors=None,
summary_vqa_txt_processors=None,
summary_vqa_model_new=None,
summary_vqa_vis_processors_new=None,
summary_vqa_txt_processors_new=None,
device_type: Optional[str] = None,
) -> None:
"""
SummaryDetector class for analysing images using the blip_caption model.
Args:
subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
model_type (str, optional): Type of model to use. Can be "base" or "large" or "vqa" for blip_caption and VQA. Or can be one of the new models:
"blip2_t5_pretrain_flant5xxl",
"blip2_t5_pretrain_flant5xl",
"blip2_t5_caption_coco_flant5xl",
"blip2_opt_pretrain_opt2.7b",
"blip2_opt_pretrain_opt6.7b",
"blip2_opt_caption_coco_opt2.7b",
"blip2_opt_caption_coco_opt6.7b". Defaults to "base".
analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
summary_model ([type], optional): blip_caption model. Defaults to None.
summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
summary_vqa_model_new ([type], optional): new_vqa model. Defaults to None.
summary_vqa_vis_processors_new ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
summary_vqa_txt_processors_new ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
Raises:
ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
Returns:
None.
"""
super().__init__(subdict)
# check if analysis_type is valid
if analysis_type not in self.allowed_analysis_types:
raise ValueError(
"analysis_type must be one of {}".format(self.allowed_analysis_types)
)
# check if device_type is valid
if device_type is None:
self.summary_device = "cuda" if cuda.is_available() else "cpu"
elif device_type not in ["cuda", "cpu"]:
raise ValueError("device_type must be one of {}".format(["cuda", "cpu"]))
else:
self.summary_device = device_type
# check if model_type is valid
if model_type not in self.all_allowed_model_types:
raise ValueError(
"Model type is not allowed - please select one of {}".format(
self.all_allowed_model_types
)
)
self.model_type = model_type
self.analysis_type = analysis_type
# check if list_of_questions is valid
if list_of_questions is None and model_type in self.allowed_model_types:
self.list_of_questions = [
"Are there people in the image?",
"What is this picture about?",
]
elif list_of_questions is None and model_type in self.allowed_new_model_types:
self.list_of_questions = [
"Question: Are there people in the image? Answer:",
"Question: What is this picture about? Answer:",
]
elif (not isinstance(list_of_questions, list)) or (
not all(isinstance(i, str) for i in list_of_questions)
):
raise ValueError(
"list_of_questions must be a list of string (questions)"
) # add sequence of questions
else:
self.list_of_questions = list_of_questions
# load models and preprocessors
if (
model_type in self.allowed_model_types
and (summary_model is None)
and (summary_vis_processors is None)
and (analysis_type == "summary" or analysis_type == "summary_and_questions")
):
self.summary_model, self.summary_vis_processors = self.load_model(
model_type=model_type
)
else:
self.summary_model = summary_model
self.summary_vis_processors = summary_vis_processors
if (
model_type in self.allowed_model_types
and (summary_vqa_model is None)
and (summary_vqa_vis_processors is None)
and (summary_vqa_txt_processors is None)
and (
analysis_type == "questions" or analysis_type == "summary_and_questions"
)
):
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
else:
self.summary_vqa_model = summary_vqa_model
self.summary_vqa_vis_processors = summary_vqa_vis_processors
self.summary_vqa_txt_processors = summary_vqa_txt_processors
if (
model_type in self.allowed_new_model_types
and (summary_vqa_model_new is None)
and (summary_vqa_vis_processors_new is None)
and (summary_vqa_txt_processors_new is None)
):
(
self.summary_vqa_model_new,
self.summary_vqa_vis_processors_new,
self.summary_vqa_txt_processors_new,
) = self.load_new_model(model_type=model_type)
else:
self.summary_vqa_model_new = summary_vqa_model_new
self.summary_vqa_vis_processors_new = summary_vqa_vis_processors_new
self.summary_vqa_txt_processors_new = summary_vqa_txt_processors_new
def load_model_base(self):
"""
Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
Returns:
summary_model (torch.nn.Module): model.
summary_vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="base_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model_large(self):
"""
Load large_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
Returns:
summary_model (torch.nn.Module): model.
summary_vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="large_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model(self, model_type: str):
"""
Load blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
model_type (str): type of the model.
Returns:
summary_model (torch.nn.Module): model.
summary_vis_processors (dict): preprocessors for visual inputs.
"""
select_model = {
"base": SummaryDetector.load_model_base,
"large": SummaryDetector.load_model_large,
}
summary_model, summary_vis_processors = select_model[model_type](self)
return summary_model, summary_vis_processors
def load_vqa_model(self):
"""
Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
Args:
Returns:
summary_vqa_model (torch.nn.Module): model.
summary_vqa_vis_processors (dict): preprocessors for visual inputs.
summary_vqa_txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def analyse_image(
self,
subdict: dict = None,
analysis_type: Optional[str] = None,
list_of_questions: Optional[list[str]] = None,
consequential_questions: bool = False,
):
"""
Analyse image with blip_caption model.
Args:
analysis_type (str): type of the analysis.
subdict (dict): dictionary with analising pictures.
list_of_questions (list[str]): list of questions.
consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models.
Returns:
self.subdict (dict): dictionary with analysis results.
"""
if analysis_type is None:
analysis_type = self.analysis_type
if subdict is not None:
self.subdict = subdict
if list_of_questions is not None:
self.list_of_questions = list_of_questions
if analysis_type == "summary_and_questions":
if (
self.model_type in self.allowed_model_types
and self.analysis_type != "summary_and_questions"
): # if model_type is not new and required model is absent
if self.summary_model is None: # load summary model if it is not loaded
self.summary_model, self.summary_vis_processors = self.load_model(
model_type=self.model_type
)
elif (
self.summary_vqa_model is None
): # load vqa model if it is not loaded
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
self.analysis_type = "summary_and_questions" # now all models are loaded, so you can perform any analysis
self.analyse_summary(nondeterministic_summaries=True)
self.analyse_questions(self.list_of_questions, consequential_questions)
elif analysis_type == "summary":
if (
(self.model_type in self.allowed_model_types)
and (self.analysis_type == "questions")
and (self.summary_model is None)
): # if model_type is not new and required model is absent
(
self.summary_model,
self.summary_vis_processors,
) = self.load_model( # load summary model if it is not loaded
model_type=self.model_type
)
self.analysis_type = "summary_and_questions" # now all models are loaded, so you can perform any analysis
self.analyse_summary(nondeterministic_summaries=True)
elif analysis_type == "questions":
if (
(self.model_type in self.allowed_model_types)
and (self.analysis_type == "summary")
and (self.summary_vqa_model is None)
): # if model_type is not new and required model is absent
(
self.summary_vqa_model, # load vqa model if it is not loaded
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
self.analysis_type = "summary_and_questions" # now all models are loaded, so you can perform any analysis
self.analyse_questions(self.list_of_questions, consequential_questions)
else:
raise ValueError(
"analysis_type must be one of {}".format(self.allowed_analysis_types)
)
return self.subdict
def analyse_summary(self, nondeterministic_summaries: bool = True):
"""
Create 1 constant and 3 non deterministic captions for image.
Args:
nondeterministic_summaries (bool): whether to create 3 non deterministic captions.
Returns:
self.subdict (dict): dictionary with analysis results.
"""
if self.model_type in self.allowed_model_types:
vis_processors = self.summary_vis_processors
model = self.summary_model
elif self.model_type in self.allowed_new_model_types:
vis_processors = self.summary_vqa_vis_processors_new
model = self.summary_vqa_model_new
else:
raise ValueError(
"Model type is not allowed - please select one of {}".format(
self.all_allowed_model_types
)
)
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
with no_grad():
self.subdict["const_image_summary"] = model.generate({"image": image})[0]
if nondeterministic_summaries:
self.subdict["3_non-deterministic_summary"] = model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
return self.subdict
def analyse_questions(
self, list_of_questions: list[str], consequential_questions: bool = False
) -> dict:
"""
Generate answers to free-form questions about image written in natural language.
Args:
list_of_questions (list[str]): list of questions.
consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models.
Returns:
self.subdict (dict): dictionary with answers to questions.
"""
model, vis_processors, txt_processors, model_old = self.check_model()
if len(list_of_questions) > 0:
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device)
)
question_batch = []
list_of_questions_processed = []
if model_old:
for quest in list_of_questions:
list_of_questions_processed.append(txt_processors["eval"](quest))
else:
for quest in list_of_questions:
list_of_questions_processed.append((str)(quest))
for quest in list_of_questions_processed:
question_batch.append(quest)
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
if not consequential_questions:
with no_grad():
if model_old:
answers_batch = model.predict_answers(
samples={
"image": image_batch,
"text_input": question_batch,
},
inference_method="generate",
)
else:
answers_batch = model.generate(
{"image": image_batch, "prompt": question_batch}
)
for q, a in zip(list_of_questions, answers_batch):
self.subdict[q] = a
if consequential_questions and not model_old:
query_with_context = ""
for quest in question_batch:
query_with_context = query_with_context + quest
with no_grad():
answer = model.generate(
{"image": image, "prompt": query_with_context}
)
self.subdict[query_with_context] = answer[0]
query_with_context = query_with_context + " " + answer[0] + ". "
elif consequential_questions and model_old:
raise ValueError(
"Consequential questions are not allowed for old models"
)
else:
print("Please, enter list of questions")
return self.subdict
def check_model(self):
"""
Check model type and return appropriate model and preprocessors.
Args:
Returns:
model (nn.Module): model.
vis_processors (dict): visual preprocessor.
txt_processors (dict): text preprocessor.
model_old (bool): whether model is old or new.
"""
if self.model_type in self.allowed_model_types:
vis_processors = self.summary_vqa_vis_processors
model = self.summary_vqa_model
txt_processors = self.summary_vqa_txt_processors
model_old = True
elif self.model_type in self.allowed_new_model_types:
vis_processors = self.summary_vqa_vis_processors_new
model = self.summary_vqa_model_new
txt_processors = self.summary_vqa_txt_processors_new
model_old = False
else:
raise ValueError(
"Model type is not allowed - please select one of {}".format(
self.all_allowed_model_types
)
)
return model, vis_processors, txt_processors, model_old
def load_new_model(self, model_type: str):
"""
Load new BLIP2 models.
Args:
model_type (str): type of the model.
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
select_model = {
"blip2_t5_pretrain_flant5xxl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl,
"blip2_t5_pretrain_flant5xl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xl,
"blip2_t5_caption_coco_flant5xl": SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl,
"blip2_opt_pretrain_opt2.7b": SummaryDetector.load_model_blip2_opt_pretrain_opt27b,
"blip2_opt_pretrain_opt6.7b": SummaryDetector.load_model_base_blip2_opt_pretrain_opt67b,
"blip2_opt_caption_coco_opt2.7b": SummaryDetector.load_model_blip2_opt_caption_coco_opt27b,
"blip2_opt_caption_coco_opt6.7b": SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b,
}
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = select_model[model_type](self)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_t5_pretrain_flant5xxl(self):
"""
Load BLIP2 model with FLAN-T5 XXL architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_t5",
model_type="pretrain_flant5xxl",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_t5_pretrain_flant5xl(self):
"""
Load BLIP2 model with FLAN-T5 XL architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_t5",
model_type="pretrain_flant5xl",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_t5_caption_coco_flant5xl(self):
"""
Load BLIP2 model with caption_coco_flant5xl architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_t5",
model_type="caption_coco_flant5xl",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_opt_pretrain_opt27b(self):
"""
Load BLIP2 model with pretrain_opt2 architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="pretrain_opt2.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_base_blip2_opt_pretrain_opt67b(self):
"""
Load BLIP2 model with pretrain_opt6.7b architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="pretrain_opt6.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_blip2_opt_caption_coco_opt27b(self):
"""
Load BLIP2 model with caption_coco_opt2.7b architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="caption_coco_opt2.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def load_model_base_blip2_opt_caption_coco_opt67b(self):
"""
Load BLIP2 model with caption_coco_opt6.7b architecture.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip2_opt",
model_type="caption_coco_opt6.7b",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors