зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-11-04 07:56:04 +02:00 
			
		
		
		
	* use pip with ipython magic and not terminal * loosen setuptools version for colab notebooks * update install instructions
		
			
				
	
	
		
			207 строки
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
		
			Generated
		
	
	
			
		
		
	
	
			207 строки
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
		
			Generated
		
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Objects recognition"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "This notebooks shows how to detect objects quickly using [cvlib](https://github.com/arunponnusamy/cvlib) and the [YOLOv4](https://github.com/AlexeyAB/darknet) model. This library detects faces, people, and several inanimate objects; we currently have restricted the output to person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, cell phone.\n",
 | 
						|
    "\n",
 | 
						|
    "The first cell is only run on google colab and installs the [ammico](https://github.com/ssciwr/AMMICO) package.\n",
 | 
						|
    "\n",
 | 
						|
    "After that, we can import `ammico` and read in the files given a folder path."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "# if running on google colab\n",
 | 
						|
    "# flake8-noqa-cell\n",
 | 
						|
    "import os\n",
 | 
						|
    "\n",
 | 
						|
    "if \"google.colab\" in str(get_ipython()):\n",
 | 
						|
    "    # update python version\n",
 | 
						|
    "    # install setuptools\n",
 | 
						|
    "    # %pip install setuptools==61 -qqq\n",
 | 
						|
    "    # install ammico\n",
 | 
						|
    "    %pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
 | 
						|
    "    # mount google drive for data and API key\n",
 | 
						|
    "    from google.colab import drive\n",
 | 
						|
    "\n",
 | 
						|
    "    drive.mount(\"/content/drive\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "import ammico\n",
 | 
						|
    "from ammico import utils as mutils\n",
 | 
						|
    "from ammico import display as mdisplay\n",
 | 
						|
    "import ammico.objects as ob"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "Set an image path as input file path."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "# Here you need to provide the path to your google drive folder\n",
 | 
						|
    "# or local folder containing the images\n",
 | 
						|
    "images = mutils.find_files(\n",
 | 
						|
    "    path=\"/content/drive/MyDrive/misinformation-data/\",\n",
 | 
						|
    "    limit=10,\n",
 | 
						|
    ")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "mydict = mutils.initialize_dict(images)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Detect objects and directly write to csv\n",
 | 
						|
    "You can directly carry out the analysis and export the result into a csv. This may take a while depending on how many images you have loaded."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "for key in mydict:\n",
 | 
						|
    "    mydict[key] = ob.ObjectDetector(mydict[key]).analyse_image()"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "Convert the dictionary of dictionarys into a dictionary with lists:"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "outdict = mutils.append_data_to_dict(mydict)\n",
 | 
						|
    "df = mutils.dump_df(outdict)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "Check the dataframe:"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "df.head(10)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "Write the csv file:"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Manually inspect what was detected\n",
 | 
						|
    "\n",
 | 
						|
    "To check the analysis, you can inspect the analyzed elements here. Loading the results takes a moment, so please be patient. If you are sure of what you are doing, you can directly export a csv file in the step above.\n",
 | 
						|
    "Here, we display the object detection results provided by the above library. Click on the tabs to see the results in the right sidebar. You may need to increment the `port` number if you are already running several notebook instances on the same server."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "analysis_explorer = mdisplay.AnalysisExplorer(mydict, identify=\"objects\")\n",
 | 
						|
    "analysis_explorer.run_server(port=8056)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.16"
 | 
						|
  },
 | 
						|
  "vscode": {
 | 
						|
   "interpreter": {
 | 
						|
    "hash": "f1142466f556ab37fe2d38e2897a16796906208adb09fea90ba58bdf8a56f0ba"
 | 
						|
   }
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 4
 | 
						|
}
 |