AMMICO/misinformation/summary.py
2023-01-27 13:09:51 +00:00

84 строки
2.9 KiB
Python

from misinformation.utils import AnalysisMethod
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
class SummaryDetector(AnalysisMethod):
def __init__(self, subdict: dict) -> None:
super().__init__(subdict)
self.subdict.update(self.set_keys())
self.image_summary = {
"const_image_summary": None,
"3_non-deterministic summary": None,
}
summary_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device
)
def set_keys(self) -> dict:
params = {
"const_image_summary": None,
"3_non-deterministic summary": None,
}
return params
def analyse_image(self):
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
self.summary_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
self.image_summary["const_image_summary"] = self.summary_model.generate(
{"image": image}
)[0]
self.image_summary["3_non-deterministic summary"] = self.summary_model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
for key in self.image_summary:
self.subdict[key] = self.image_summary[key]
return self.subdict
(
summary_VQA_model,
summary_VQA_vis_processors,
summary_VQA_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device
)
def analyse_questions(self, list_of_questions):
if len(list_of_questions) > 0:
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
self.summary_VQA_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
question_batch = []
for quest in list_of_questions:
question_batch.append(self.summary_VQA_txt_processors["eval"](quest))
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
answers_batch = self.summary_VQA_model.predict_answers(
samples={"image": image_batch, "text_input": question_batch},
inference_method="generate",
)
for q, a in zip(question_batch, answers_batch):
self.image_summary[q] = a
for key in self.image_summary:
self.subdict[key] = self.image_summary[key]
else:
print("Please, enter list of questions")
return self.subdict