AMMICO/ammico/display.py
Inga Ulusoy e11d4c05f4
Update notebooks and add options in display for text model names (#133)
* updated notebooks for the new interface

---------

Co-authored-by: Petr Andriushchenko <pitandmind@gmail.com>
2023-07-12 09:31:58 +02:00

533 строки
20 KiB
Python

import ammico.faces as faces
import ammico.text as text
import ammico.objects as objects
import ammico.colors as colors
from ammico.utils import is_interactive
import ammico.summary as summary
import dash_renderjson
from dash import html, Input, Output, dcc, State
import jupyter_dash
from PIL import Image
COLOR_SCHEMES = [
"CIE 1976",
"CIE 1994",
"CIE 2000",
"CMC",
"ITP",
"CAM02-LCD",
"CAM02-SCD",
"CAM02-UCS",
"CAM16-LCD",
"CAM16-SCD",
"CAM16-UCS",
"DIN99",
]
SUMMARY_ANALYSIS_TYPE = ["summary_and_questions", "summary", "questions"]
SUMMARY_MODEL = ["base", "large"]
class AnalysisExplorer:
def __init__(self, mydict: dict) -> None:
"""Initialize the AnalysisExplorer class to create an interactive
visualization of the analysis results.
Args:
mydict (dict): A nested dictionary containing image data for all images.
"""
self.app = jupyter_dash.JupyterDash(__name__)
self.mydict = mydict
self.theme = {
"scheme": "monokai",
"author": "wimer hazenberg (http://www.monokai.nl)",
"base00": "#272822",
"base01": "#383830",
"base02": "#49483e",
"base03": "#75715e",
"base04": "#a59f85",
"base05": "#f8f8f2",
"base06": "#f5f4f1",
"base07": "#f9f8f5",
"base08": "#f92672",
"base09": "#fd971f",
"base0A": "#f4bf75",
"base0B": "#a6e22e",
"base0C": "#a1efe4",
"base0D": "#66d9ef",
"base0E": "#ae81ff",
"base0F": "#cc6633",
}
# Setup the layout
app_layout = html.Div(
[
# Top
html.Div(
[self._top_file_explorer(mydict)],
id="Div_top",
style={
"width": "30%",
},
),
# Middle
html.Div(
[self._middle_picture_frame()],
id="Div_middle",
style={
"width": "50%",
"display": "inline-block",
"verticalAlign": "top",
},
),
# Right
html.Div(
[self._right_output_json()],
id="Div_right",
style={
"width": "45%",
"display": "inline-block",
"verticalAlign": "top",
},
),
],
style={"width": "95%", "display": "inline-block"},
)
self.app.layout = app_layout
# Add callbacks to the app
self.app.callback(
Output("img_middle_picture_id", "src"),
Input("left_select_id", "value"),
prevent_initial_call=True,
)(self.update_picture)
self.app.callback(
Output("right_json_viewer", "data"),
Input("button_run", "n_clicks"),
State("left_select_id", "options"),
State("left_select_id", "value"),
State("Dropdown_select_Detector", "value"),
State("setting_Text_analyse_text", "value"),
State("setting_Text_model_names", "value"),
State("setting_Text_revision_numbers", "value"),
State("setting_Emotion_emotion_threshold", "value"),
State("setting_Emotion_race_threshold", "value"),
State("setting_Color_delta_e_method", "value"),
State("setting_Summary_analysis_type", "value"),
State("setting_Summary_model", "value"),
State("setting_Summary_list_of_questions", "value"),
prevent_initial_call=True,
)(self._right_output_analysis)
self.app.callback(
Output("settings_TextDetector", "style"),
Output("settings_EmotionDetector", "style"),
Output("settings_ColorDetector", "style"),
Output("settings_Summary_Detector", "style"),
Input("Dropdown_select_Detector", "value"),
)(self._update_detector_setting)
# I split the different sections into subfunctions for better clarity
def _top_file_explorer(self, mydict: dict) -> html.Div:
"""Initialize the file explorer dropdown for selecting the file to be analyzed.
Args:
mydict (dict): A dictionary containing image data.
Returns:
html.Div: The layout for the file explorer dropdown.
"""
left_layout = html.Div(
[
dcc.Dropdown(
options={value["filename"]: key for key, value in mydict.items()},
id="left_select_id",
)
]
)
return left_layout
def _middle_picture_frame(self) -> html.Div:
"""Initialize the picture frame to display the image.
Returns:
html.Div: The layout for the picture frame.
"""
middle_layout = html.Div(
[
html.Img(
id="img_middle_picture_id",
style={
"width": "80%",
},
)
]
)
return middle_layout
def _create_setting_layout(self):
settings_layout = html.Div(
[
html.Div(
id="settings_TextDetector",
style={"display": "none"},
children=[
dcc.Checklist(
["Analyse text"],
["Analyse text"],
id="setting_Text_analyse_text",
),
html.Div(
[
html.Div(
"Select models for text_summary, text_sentiment, text_NER or leave blank for default:",
style={
"height": "30px",
"margin-top": "5px",
},
),
dcc.Input(
type="text",
id="setting_Text_model_names",
style={"height": "auto", "margin-bottom": "auto"},
),
],
style={
"width": "33%",
"display": "inline-block",
"margin-top": "10px",
},
),
html.Div(
[
html.Div(
"Select model revision number for text_summary, text_sentiment, text_NER or leave blank for default:",
style={
"height": "30px",
"margin-top": "5px",
},
),
dcc.Input(
type="text",
id="setting_Text_revision_numbers",
style={"height": "auto", "margin-bottom": "auto"},
),
],
style={
"width": "33%",
"display": "inline-block",
"margin-top": "10px",
},
),
],
),
html.Div(
id="settings_EmotionDetector",
style={"display": "none"},
children=[
html.Div(
[
html.Div(
"Emotion threshold",
style={"height": "30px", "margin-top": "5px"},
),
dcc.Input(
value=50,
type="number",
max=100,
min=0,
id="setting_Emotion_emotion_threshold",
style={"height": "auto", "margin-bottom": "auto"},
),
],
style={"width": "49%", "display": "inline-block"},
),
html.Div(
[
html.Div(
"Race threshold",
style={
"height": "30px",
"margin-top": "5px",
},
),
dcc.Input(
type="number",
value=50,
max=100,
min=0,
id="setting_Emotion_race_threshold",
style={"height": "auto", "margin-bottom": "auto"},
),
],
style={
"width": "49%",
"display": "inline-block",
"margin-top": "10px",
},
),
],
),
html.Div(
id="settings_ColorDetector",
style={"display": "none"},
children=[
html.Div(
[
dcc.Dropdown(
options=COLOR_SCHEMES,
value="CIE 1976",
id="setting_Color_delta_e_method",
)
],
style={
"width": "49%",
"display": "inline-block",
"margin-top": "10px",
},
)
],
),
html.Div(
id="settings_Summary_Detector",
style={"display": "none"},
children=[
html.Div(
[
dcc.Dropdown(
options=SUMMARY_ANALYSIS_TYPE,
value="summary_and_questions",
id="setting_Summary_analysis_type",
)
],
style={
"width": "33%",
"display": "inline-block",
},
),
html.Div(
[
dcc.Dropdown(
options=SUMMARY_MODEL,
value="base",
id="setting_Summary_model",
)
],
style={
"width": "33%",
"display": "inline-block",
"margin-top": "10px",
},
),
html.Div(
[
html.Div(
"Please enter a question",
style={
"height": "50px",
"margin-top": "5px",
},
),
dcc.Input(
type="text",
id="setting_Summary_list_of_questions",
style={"height": "auto", "margin-bottom": "auto"},
),
],
style={
"width": "33%",
"display": "inline-block",
"margin-top": "10px",
},
),
],
),
],
)
return settings_layout
def _right_output_json(self) -> html.Div:
"""Initialize the DetectorDropdown, argument Div and JSON viewer for displaying the analysis output.
Returns:
html.Div: The layout for the JSON viewer.
"""
right_layout = html.Div(
[
dcc.Loading(
id="loading-2",
children=[
html.Div(
[
dcc.Dropdown(
options=[
"TextDetector",
"ObjectDetector",
"EmotionDetector",
"SummaryDetector",
"ColorDetector",
],
value="TextDetector",
id="Dropdown_select_Detector",
),
html.Div(
children=[self._create_setting_layout()],
id="div_detector_args",
),
html.Button("Run Detector", id="button_run"),
dash_renderjson.DashRenderjson(
id="right_json_viewer",
data={},
max_depth=-1,
theme=self.theme,
invert_theme=True,
),
]
)
],
type="circle",
)
]
)
return right_layout
def run_server(self, port: int = 8050) -> None:
"""Run the Dash server to start the analysis explorer.
This method should only be called in an interactive environment like Jupyter notebooks.
Raises an EnvironmentError if not called in an interactive environment.
Args:
port (int, optional): The port number to run the server on (default: 8050).
"""
if not is_interactive():
raise EnvironmentError(
"Dash server should only be called in an interactive environment like Jupyter notebooks."
)
self.app.run_server(debug=True, mode="inline", port=port)
# Dash callbacks
def update_picture(self, img_path: str):
"""Callback function to update the displayed image.
Args:
img_path (str): The path of the selected image.
Returns:
Union[PIL.PngImagePlugin, None]: The image object to be displayed
or None if the image path is
"""
if img_path is not None:
image = Image.open(img_path)
return image
else:
return None
def _update_detector_setting(self, setting_input):
# return settings_TextDetector -> style, settings_EmotionDetector -> style
display_none = {"display": "none"}
display_flex = {
"display": "flex",
"flexWrap": "wrap",
"width": 400,
"margin-top": "20px",
}
if setting_input == "TextDetector":
return display_flex, display_none, display_none, display_none
if setting_input == "EmotionDetector":
return display_none, display_flex, display_none, display_none
if setting_input == "ColorDetector":
return display_none, display_none, display_flex, display_none
if setting_input == "SummaryDetector":
return display_none, display_none, display_none, display_flex
else:
return display_none, display_none, display_none, display_none
def _right_output_analysis(
self,
n_clicks,
all_img_options: dict,
current_img_value: str,
detector_value: str,
settings_text_analyse_text: list,
settings_text_model_names: str,
settings_text_revision_numbers: str,
setting_emotion_emotion_threshold: int,
setting_emotion_race_threshold: int,
setting_color_delta_e_method: str,
setting_summary_analysis_type: str,
setting_summary_model: str,
setting_summary_list_of_questions: str,
) -> dict:
"""Callback function to perform analysis on the selected image and return the output.
Args:
all_options (dict): The available options in the file explorer dropdown.
current_value (str): The current selected value in the file explorer dropdown.
Returns:
dict: The analysis output for the selected image.
"""
identify_dict = {
"EmotionDetector": faces.EmotionDetector,
"TextDetector": text.TextDetector,
"ObjectDetector": objects.ObjectDetector,
"SummaryDetector": summary.SummaryDetector,
"ColorDetector": colors.ColorDetector,
}
# Get image ID from dropdown value, which is the filepath
if current_img_value is None:
return {}
image_id = all_img_options[current_img_value]
# copy image so prvious runs don't leave their default values in the dict
image_copy = self.mydict[image_id].copy()
identify_function = identify_dict[detector_value]
if detector_value == "TextDetector":
analyse_text = (
True if settings_text_analyse_text == ["Analyse text"] else False
)
detector_class = identify_function(
image_copy,
analyse_text=analyse_text,
model_names=[settings_text_model_names]
if (settings_text_model_names is not None)
else None,
revision_numbers=[settings_text_revision_numbers]
if (settings_text_revision_numbers is not None)
else None,
)
elif detector_value == "EmotionDetector":
detector_class = identify_function(
image_copy,
race_threshold=setting_emotion_race_threshold,
emotion_threshold=setting_emotion_emotion_threshold,
)
elif detector_value == "ColorDetector":
detector_class = identify_function(
image_copy,
delta_e_method=setting_color_delta_e_method,
)
elif detector_value == "SummaryDetector":
detector_class = identify_function(
image_copy,
analysis_type=setting_summary_analysis_type,
summary_model_type=setting_summary_model,
list_of_questions=[setting_summary_list_of_questions]
if (setting_summary_list_of_questions is not None)
else None,
)
else:
detector_class = identify_function(image_copy)
return detector_class.analyse_image()