зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-30 13:36:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			96 строки
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			96 строки
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from ammico.utils import AnalysisMethod
 | |
| from torch import device, cuda, no_grad
 | |
| from PIL import Image
 | |
| from lavis.models import load_model_and_preprocess
 | |
| 
 | |
| 
 | |
| class SummaryDetector(AnalysisMethod):
 | |
|     def __init__(self, subdict: dict) -> None:
 | |
|         super().__init__(subdict)
 | |
|         self.summary_device = device("cuda" if cuda.is_available() else "cpu")
 | |
| 
 | |
|     def load_model_base(self):
 | |
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|             name="blip_caption",
 | |
|             model_type="base_coco",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_model_large(self):
 | |
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess(
 | |
|             name="blip_caption",
 | |
|             model_type="large_coco",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def load_model(self, model_type):
 | |
|         # self.summary_device = device("cuda" if cuda.is_available() else "cpu")
 | |
|         select_model = {
 | |
|             "base": SummaryDetector.load_model_base,
 | |
|             "large": SummaryDetector.load_model_large,
 | |
|         }
 | |
|         summary_model, summary_vis_processors = select_model[model_type](self)
 | |
|         return summary_model, summary_vis_processors
 | |
| 
 | |
|     def analyse_image(self, summary_model=None, summary_vis_processors=None):
 | |
|         if summary_model is None and summary_vis_processors is None:
 | |
|             summary_model, summary_vis_processors = self.load_model_base()
 | |
| 
 | |
|         path = self.subdict["filename"]
 | |
|         raw_image = Image.open(path).convert("RGB")
 | |
|         image = (
 | |
|             summary_vis_processors["eval"](raw_image)
 | |
|             .unsqueeze(0)
 | |
|             .to(self.summary_device)
 | |
|         )
 | |
|         with no_grad():
 | |
|             self.subdict["const_image_summary"] = summary_model.generate(
 | |
|                 {"image": image}
 | |
|             )[0]
 | |
|             self.subdict["3_non-deterministic summary"] = summary_model.generate(
 | |
|                 {"image": image}, use_nucleus_sampling=True, num_captions=3
 | |
|             )
 | |
|         return self.subdict
 | |
| 
 | |
|     def analyse_questions(self, list_of_questions):
 | |
|         (
 | |
|             summary_vqa_model,
 | |
|             summary_vqa_vis_processors,
 | |
|             summary_vqa_txt_processors,
 | |
|         ) = load_model_and_preprocess(
 | |
|             name="blip_vqa",
 | |
|             model_type="vqav2",
 | |
|             is_eval=True,
 | |
|             device=self.summary_device,
 | |
|         )
 | |
|         if len(list_of_questions) > 0:
 | |
|             path = self.subdict["filename"]
 | |
|             raw_image = Image.open(path).convert("RGB")
 | |
|             image = (
 | |
|                 summary_vqa_vis_processors["eval"](raw_image)
 | |
|                 .unsqueeze(0)
 | |
|                 .to(self.summary_device)
 | |
|             )
 | |
|             question_batch = []
 | |
|             for quest in list_of_questions:
 | |
|                 question_batch.append(summary_vqa_txt_processors["eval"](quest))
 | |
|             batch_size = len(list_of_questions)
 | |
|             image_batch = image.repeat(batch_size, 1, 1, 1)
 | |
| 
 | |
|             with no_grad():
 | |
|                 answers_batch = summary_vqa_model.predict_answers(
 | |
|                     samples={"image": image_batch, "text_input": question_batch},
 | |
|                     inference_method="generate",
 | |
|                 )
 | |
| 
 | |
|             for q, a in zip(list_of_questions, answers_batch):
 | |
|                 self.subdict[q] = a
 | |
| 
 | |
|         else:
 | |
|             print("Please, enter list of questions")
 | |
|         return self.subdict
 | 
