AMMICO/misinformation/accuracy.py
Inga Ulusoy 37d07da98a
Accuracy test (#32)
* Create ci.yml

* include pytest

* Update pyproject.toml

* include pytest-cov

* use approx in pytest

* Update test_faces.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add coverage yaml

* reduce passing grade

* use copy instead of symlink on windows

* crude attempt at calculating deviations

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 14:32:45 +02:00

148 строки
5.2 KiB
Python

import pandas as pd
import json
from misinformation import utils
from misinformation import faces
class LabelManager:
def __init__(self):
self.labels_code = None
self.labels = None
self.f_labels = None
self.f_labels_code = None
self.load()
def load(self):
self.labels_code = pd.read_excel(
"./misinformation/test/data/EUROPE_APRMAY20_data_variable_labels_coding.xlsx",
sheet_name="variable_labels_codings",
)
self.labels = pd.read_csv(
"./misinformation/test/data/Europe_APRMAY20data190722.csv",
sep=",",
decimal=".",
)
self.map = self.read_json("./misinformation/data/map_test_set.json")
def read_json(self, name):
with open("{}".format(name)) as f:
mydict = json.load(f)
return mydict
def get_orders(self):
return [i["order"] for i in self.map.values()]
def filter_from_order(self, orders: list):
cols = []
for order in orders:
col = self.labels_code.iloc[order - 1, 1]
cols.append(col.lower())
self.f_labels_code = self.labels_code.loc[
self.labels_code["order"].isin(orders)
]
self.f_labels = self.labels[cols]
def gen_dict(self):
labels_dict = {}
if self.f_labels is None:
print("No filtered labels found")
return labels_dict
cols = self.f_labels.columns.tolist()
for index, row in self.f_labels.iterrows():
row_dict = {}
for col in cols:
row_dict[col] = row[col]
labels_dict[row["pic_id"]] = row_dict
return labels_dict
def map_dict(self, mydict):
mapped_dict = {}
for id, subdict in mydict.items():
mapped_subdict = {}
mapped_subdict["id"] = id[0:-2]
mapped_subdict["pic_order"] = id[-1] if id[-2] == "0" else id[-2::]
mapped_subdict["pic_id"] = id
for key in self.map.keys():
# get the key name
mydict_name = self.map[key]["variable_mydict"]
mydict_value = self.map[key]["value_mydict"]
# find out which value was set
mydict_current = subdict[mydict_name]
# now map to new key-value pair
mapped_subdict[key] = 1 if mydict_current == mydict_value else 0
# substitute the values that are not boolean
if self.map[key]["variable_coding"] != "Bool":
mapped_subdict[key] = mydict_current
# take only first value in lists - this applies to faces,
# reported are up to three in a list, we compare only the
# largest one here
if isinstance(mydict_current, list):
mapped_subdict[key] = 1 if mydict_current[0] == mydict_value else 0
# also cut out the likelihood for detected emotion
if isinstance(mydict_current[0], tuple):
mapped_subdict[key] = (
1 if mydict_current[0][0] == mydict_value else 0
)
mapped_dict[id] = mapped_subdict
return mapped_dict
if __name__ == "__main__":
files = utils.find_files(
path="/home/inga/projects/misinformation-project/misinformation/misinformation/test/data/Europe APRMAY20 visual data/cropped images",
limit=500,
)
mydict = utils.initialize_dict(files)
# analyze faces
image_ids = [key for key in mydict.keys()]
for i in image_ids:
mydict[i] = faces.EmotionDetector(mydict[i]).analyse_image()
outdict = utils.append_data_to_dict(mydict)
df = utils.dump_df(outdict)
# print(df.head(10))
df.to_csv("mydict_out.csv")
# example of LabelManager for loading csv data to dict
lm = LabelManager()
# get the desired label numbers automatically
orders = lm.get_orders()
# map mydict to the specified variable names and values
mydict_map = lm.map_dict(mydict)
lm.filter_from_order([1, 2, 3] + orders)
labels = lm.gen_dict()
comp = {}
for key in labels.keys():
if str(key) not in mydict_map:
print("Key {} not found.".format(key))
continue
print("ref: {}".format(labels[key]))
print("com: {}".format(mydict_map[str(key)]))
for subkey in labels[key]:
if type(labels[key][subkey]) != int:
continue
if type(mydict_map[str(key)][subkey]) != int:
continue
comp[subkey] = comp.get(subkey, 0) + abs(
labels[key][subkey] - mydict_map[str(key)][subkey]
)
print("summary: ")
# why v9_5a not there - bec reads in as float from the csv
print(comp)
# summary:
# {'v9_4': 42, 'v9_5b': 1579, 'v9_6': 229, 'v9_7': 45, 'v9_8': 39, 'v9_8a': 31, 'v9_9': 58, 'v9_10': 33, 'v9_11': 22, 'v9_12': 2, 'v9_13': 24, 'v11_3': 39}
# Important here is:
# Overall positive - 'v9_8': 39 deviations
# Overall negative - 'v9_9': 58
# happy - 'v9_8a': 31
# fear - 'v9_10': 33
# angry - 'v9_11': 22
# disgust - 'v9_12': 2
# sad - 'v9_13': 24
# respect of rules = wears mask - 'v11_3': 39