Inga Ulusoy d4cda187e3
Facial expression dict (#24)
* convert into dict output

* faces class

* return cleaned dict

* empty methods that are required

* with dict updates

* with dominant emotion confidence as tuple

* multiple images

* update notebook
2022-08-17 23:00:46 +02:00

41 строка
1.2 KiB
Python

from google.cloud import vision
import io
from misinformation import utils
class TextDetector(utils.AnalysisMethod):
def __init__(self, subdict: dict) -> None:
super().__init__(subdict)
self.subdict.update(self.set_keys())
def set_keys(self) -> dict:
params = {"text": None}
return params
def analyse_image(self):
"""Detects text on the image."""
path = self.subdict["filename"]
client = vision.ImageAnnotatorClient()
with io.open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.text_detection(image=image)
texts = response.text_annotations
# here check if text was found
self.subdict = {"text": []}
for text in texts:
self.subdict["text"].append(text.description)
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(
response.error.message
)
)
return self.subdict