зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-30 21:46:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			404 строки
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			404 строки
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from google.cloud import vision
 | |
| from google.auth.exceptions import DefaultCredentialsError
 | |
| from googletrans import Translator
 | |
| import spacy
 | |
| import io
 | |
| from ammico.utils import AnalysisMethod
 | |
| import grpc
 | |
| import pandas as pd
 | |
| from bertopic import BERTopic
 | |
| from transformers import pipeline
 | |
| 
 | |
| 
 | |
| class TextDetector(AnalysisMethod):
 | |
|     def __init__(
 | |
|         self,
 | |
|         subdict: dict,
 | |
|         analyse_text: bool = False,
 | |
|         model_names: list = None,
 | |
|         revision_numbers: list = None,
 | |
|     ) -> None:
 | |
|         """Init text detection class.
 | |
| 
 | |
|         Args:
 | |
|             subdict (dict): Dictionary containing file name/path, and possibly previous
 | |
|                 analysis results from other modules.
 | |
|             analyse_text (bool, optional): Decide if extracted text will be further subject
 | |
|                 to analysis. Defaults to False.
 | |
|             model_names (list, optional): Provide model names for summary, sentiment and ner
 | |
|                 analysis. Defaults to None, in which case the default model from transformers
 | |
|                 are used (as of 03/2023): "sshleifer/distilbart-cnn-12-6" (summary),
 | |
|                 "distilbert-base-uncased-finetuned-sst-2-english" (sentiment),
 | |
|                 "dbmdz/bert-large-cased-finetuned-conll03-english".
 | |
|                 To select other models, provide a list with three entries, the first for
 | |
|                 summary, second for sentiment, third for NER, with the desired model names.
 | |
|                 Set one of these to None to still use the default model.
 | |
|             revision_numbers (list, optional): Model revision (commit) numbers on the
 | |
|                 Hugging Face hub. Provide this to make sure you are using the same model.
 | |
|                 Defaults to None, except if the default models are used; then it defaults to
 | |
|                 "a4f8f3e" (summary, distilbart), "af0f99b" (sentiment, distilbert),
 | |
|                 "f2482bf" (NER, bert).
 | |
|         """
 | |
|         super().__init__(subdict)
 | |
|         self.subdict.update(self.set_keys())
 | |
|         self.translator = Translator()
 | |
|         if not isinstance(analyse_text, bool):
 | |
|             raise ValueError("analyse_text needs to be set to true or false")
 | |
|         self.analyse_text = analyse_text
 | |
|         if self.analyse_text:
 | |
|             self._initialize_spacy()
 | |
|         if model_names:
 | |
|             self._check_valid_models(model_names)
 | |
|         if revision_numbers:
 | |
|             self._check_revision_numbers(revision_numbers)
 | |
|         # initialize revision numbers and models
 | |
|         self._init_revision_numbers(model_names, revision_numbers)
 | |
|         self._init_model(model_names)
 | |
| 
 | |
|     def _check_valid_models(self, model_names):
 | |
|         # check that model_names and revision_numbers are valid lists or None
 | |
|         # check that model names are a list
 | |
|         if not isinstance(model_names, list):
 | |
|             raise ValueError("Model names need to be provided as a list!")
 | |
|         # check that enough models are provided, one for each method
 | |
|         if len(model_names) != 3:
 | |
|             raise ValueError(
 | |
|                 "Not enough or too many model names provided - three are required, one each for summary, sentiment, ner"
 | |
|             )
 | |
| 
 | |
|     def _check_revision_numbers(self, revision_numbers):
 | |
|         # check that revision numbers are list
 | |
|         if not isinstance(revision_numbers, list):
 | |
|             raise ValueError("Revision numbers need to be provided as a list!")
 | |
|         # check that three revision numbers are provided, one for each method
 | |
|         if len(revision_numbers) != 3:
 | |
|             raise ValueError(
 | |
|                 "Not enough or too many revision numbers provided - three are required, one each for summary, sentiment, ner"
 | |
|             )
 | |
| 
 | |
|     def _init_revision_numbers(self, model_names, revision_numbers):
 | |
|         """Helper method to set the revision (version) number for each model."""
 | |
|         revision_numbers_default = ["a4f8f3e", "af0f99b", "f2482bf"]
 | |
|         if model_names:
 | |
|             # if model_names is provided, set revision numbers for each of the methods
 | |
|             # either as the provided revision number or None or as the default revision number,
 | |
|             # if one of the methods uses the default model
 | |
|             self._init_revision_numbers_per_model(
 | |
|                 model_names, revision_numbers, revision_numbers_default
 | |
|             )
 | |
|         else:
 | |
|             # model_names was not provided, revision numbers are the default revision numbers or None
 | |
|             self.revision_summary = revision_numbers_default[0]
 | |
|             self.revision_sentiment = revision_numbers_default[1]
 | |
|             self.revision_ner = revision_numbers_default[2]
 | |
| 
 | |
|     def _init_revision_numbers_per_model(
 | |
|         self, model_names, revision_numbers, revision_numbers_default
 | |
|     ):
 | |
|         task_list = []
 | |
|         if not revision_numbers:
 | |
|             # no revision numbers for non-default models provided
 | |
|             revision_numbers = [None, None, None]
 | |
|         for model, revision, revision_default in zip(
 | |
|             model_names, revision_numbers, revision_numbers_default
 | |
|         ):
 | |
|             # a model was specified for this task, set specified revision number or None
 | |
|             # or: model for this task was set to None, so we take default version number for default model
 | |
|             task_list.append(revision if model else revision_default)
 | |
|         self.revision_summary = task_list[0]
 | |
|         self.revision_sentiment = task_list[1]
 | |
|         self.revision_ner = task_list[2]
 | |
| 
 | |
|     def _init_model(self, model_names):
 | |
|         """Helper method to set the model name for each analysis method."""
 | |
|         # assign models for each of the text analysis methods
 | |
|         # and check that they are valid
 | |
|         model_names_default = [
 | |
|             "sshleifer/distilbart-cnn-12-6",
 | |
|             "distilbert-base-uncased-finetuned-sst-2-english",
 | |
|             "dbmdz/bert-large-cased-finetuned-conll03-english",
 | |
|         ]
 | |
|         # no model names provided, set the default
 | |
|         if not model_names:
 | |
|             model_names = model_names_default
 | |
|         # now assign model names for each of the methods
 | |
|         # either to the provided model name or the default if one of the
 | |
|         # task's models is set to None
 | |
|         self.model_summary = (
 | |
|             model_names[0] if model_names[0] else model_names_default[0]
 | |
|         )
 | |
|         self.model_sentiment = (
 | |
|             model_names[1] if model_names[1] else model_names_default[1]
 | |
|         )
 | |
|         self.model_ner = model_names[2] if model_names[2] else model_names_default[2]
 | |
| 
 | |
|     def set_keys(self) -> dict:
 | |
|         """Set the default keys for text analysis.
 | |
| 
 | |
|         Returns:
 | |
|             dict: The dictionary with default text keys.
 | |
|         """
 | |
|         params = {"text": None, "text_language": None, "text_english": None}
 | |
|         return params
 | |
| 
 | |
|     def _initialize_spacy(self):
 | |
|         """Initialize the Spacy library for text analysis."""
 | |
|         try:
 | |
|             self.nlp = spacy.load("en_core_web_md")
 | |
|         except Exception:
 | |
|             spacy.cli.download("en_core_web_md")
 | |
|             self.nlp = spacy.load("en_core_web_md")
 | |
| 
 | |
|     def analyse_image(self) -> dict:
 | |
|         """Perform text extraction and analysis of the text.
 | |
| 
 | |
|         Returns:
 | |
|             dict: The updated dictionary with text analysis results.
 | |
|         """
 | |
|         self.get_text_from_image()
 | |
|         self.translate_text()
 | |
|         self.remove_linebreaks()
 | |
|         if self.analyse_text:
 | |
|             self._run_spacy()
 | |
|             self.clean_text()
 | |
|             self.text_summary()
 | |
|             self.text_sentiment_transformers()
 | |
|             self.text_ner()
 | |
|         return self.subdict
 | |
| 
 | |
|     def get_text_from_image(self):
 | |
|         """Detect text on the image using Google Cloud Vision API."""
 | |
|         path = self.subdict["filename"]
 | |
|         try:
 | |
|             client = vision.ImageAnnotatorClient()
 | |
|         except DefaultCredentialsError:
 | |
|             raise DefaultCredentialsError(
 | |
|                 "Please provide credentials for google cloud vision API, see https://cloud.google.com/docs/authentication/application-default-credentials."
 | |
|             )
 | |
|         with io.open(path, "rb") as image_file:
 | |
|             content = image_file.read()
 | |
|         image = vision.Image(content=content)
 | |
|         # check for usual connection errors and retry if necessary
 | |
|         try:
 | |
|             response = client.text_detection(image=image)
 | |
|         except grpc.RpcError as exc:
 | |
|             print("Cloud vision API connection failed")
 | |
|             print("Skipping this image ..{}".format(path))
 | |
|             print("Connection failed with code {}: {}".format(exc.code(), exc))
 | |
|         # here check if text was found on image
 | |
|         if response:
 | |
|             texts = response.text_annotations[0].description
 | |
|             self.subdict["text"] = texts
 | |
|         if response.error.message:
 | |
|             print("Google Cloud Vision Error")
 | |
|             raise ValueError(
 | |
|                 "{}\nFor more info on error messages, check: "
 | |
|                 "https://cloud.google.com/apis/design/errors".format(
 | |
|                     response.error.message
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|     def translate_text(self):
 | |
|         """Translate the detected text to English using the Translator object."""
 | |
|         translated = self.translator.translate(self.subdict["text"])
 | |
|         self.subdict["text_language"] = translated.src
 | |
|         self.subdict["text_english"] = translated.text
 | |
| 
 | |
|     def remove_linebreaks(self):
 | |
|         """Remove linebreaks from original and translated text."""
 | |
|         if self.subdict["text"]:
 | |
|             self.subdict["text"] = self.subdict["text"].replace("\n", " ")
 | |
|             self.subdict["text_english"] = self.subdict["text_english"].replace(
 | |
|                 "\n", " "
 | |
|             )
 | |
| 
 | |
|     def _run_spacy(self):
 | |
|         """Generate Spacy doc object for further text analysis."""
 | |
|         self.doc = self.nlp(self.subdict["text_english"])
 | |
| 
 | |
|     def clean_text(self):
 | |
|         """Clean the text from unrecognized words and any numbers."""
 | |
|         templist = []
 | |
|         for token in self.doc:
 | |
|             templist.append(
 | |
|                 token.text
 | |
|             ) if token.pos_ != "NUM" and token.has_vector else None
 | |
|         self.subdict["text_clean"] = " ".join(templist).rstrip().lstrip()
 | |
| 
 | |
|     def text_summary(self):
 | |
|         """Generate a summary of the text using the Transformers pipeline."""
 | |
|         # use the transformers pipeline to summarize the text
 | |
|         # use the current default model - 03/2023
 | |
|         max_number_of_characters = 3000
 | |
|         pipe = pipeline(
 | |
|             "summarization",
 | |
|             model=self.model_summary,
 | |
|             revision=self.revision_summary,
 | |
|             min_length=5,
 | |
|             max_length=20,
 | |
|         )
 | |
|         try:
 | |
|             summary = pipe(self.subdict["text_english"][0:max_number_of_characters])
 | |
|             self.subdict["text_summary"] = summary[0]["summary_text"]
 | |
|         except IndexError:
 | |
|             print(
 | |
|                 "Cannot provide summary for this object - please check that the text has been translated correctly."
 | |
|             )
 | |
|             print("Image: {}".format(self.subdict["filename"]))
 | |
|             self.subdict["text_summary"] = None
 | |
| 
 | |
|     def text_sentiment_transformers(self):
 | |
|         """Perform text classification for sentiment using the Transformers pipeline."""
 | |
|         # use the transformers pipeline for text classification
 | |
|         # use the current default model - 03/2023
 | |
|         pipe = pipeline(
 | |
|             "text-classification",
 | |
|             model=self.model_sentiment,
 | |
|             revision=self.revision_sentiment,
 | |
|             truncation=True,
 | |
|         )
 | |
|         result = pipe(self.subdict["text_english"])
 | |
|         self.subdict["sentiment"] = result[0]["label"]
 | |
|         self.subdict["sentiment_score"] = round(result[0]["score"], 2)
 | |
| 
 | |
|     def text_ner(self):
 | |
|         """Perform named entity recognition on the text using the Transformers pipeline."""
 | |
|         # use the transformers pipeline for named entity recognition
 | |
|         # use the current default model - 03/2023
 | |
|         pipe = pipeline(
 | |
|             "token-classification",
 | |
|             model=self.model_ner,
 | |
|             revision=self.revision_ner,
 | |
|             aggregation_strategy="simple",
 | |
|         )
 | |
|         result = pipe(self.subdict["text_english"])
 | |
|         self.subdict["entity"] = []
 | |
|         self.subdict["entity_type"] = []
 | |
|         for entity in result:
 | |
|             self.subdict["entity"].append(entity["word"])
 | |
|             self.subdict["entity_type"].append(entity["entity_group"])
 | |
| 
 | |
| 
 | |
| class PostprocessText:
 | |
|     def __init__(
 | |
|         self,
 | |
|         mydict: dict = None,
 | |
|         use_csv: bool = False,
 | |
|         csv_path: str = None,
 | |
|         analyze_text: str = "text_english",
 | |
|     ) -> None:
 | |
|         """
 | |
|         Initializes the PostprocessText class that handles the topic analysis.
 | |
| 
 | |
|         Args:
 | |
|             mydict (dict, optional): Dictionary with textual data. Defaults to None.
 | |
|             use_csv (bool, optional): Flag indicating whether to use a CSV file. Defaults to False.
 | |
|             csv_path (str, optional): Path to the CSV file. Required if `use_csv` is True. Defaults to None.
 | |
|             analyze_text (str, optional): Key for the text field to analyze. Defaults to "text_english".
 | |
|         """
 | |
|         self.use_csv = use_csv
 | |
|         if mydict:
 | |
|             print("Reading data from dict.")
 | |
|             self.mydict = mydict
 | |
|             self.list_text_english = self.get_text_dict(analyze_text)
 | |
|         elif self.use_csv:
 | |
|             print("Reading data from df.")
 | |
|             self.df = pd.read_csv(csv_path, encoding="utf8")
 | |
|             self.list_text_english = self.get_text_df(analyze_text)
 | |
|         else:
 | |
|             raise ValueError(
 | |
|                 "Please provide either dictionary with textual data or \
 | |
|                               a csv file by setting `use_csv` to True and providing a \
 | |
|                              `csv_path`."
 | |
|             )
 | |
|         # initialize spacy
 | |
|         self._initialize_spacy()
 | |
| 
 | |
|     def _initialize_spacy(self):
 | |
|         try:
 | |
|             self.nlp = spacy.load(
 | |
|                 "en_core_web_md",
 | |
|                 exclude=["tagger", "parser", "ner", "attribute_ruler", "lemmatizer"],
 | |
|             )
 | |
|         except Exception:
 | |
|             spacy.cli.download("en_core_web_md")
 | |
|             self.nlp = spacy.load(
 | |
|                 "en_core_web_md",
 | |
|                 exclude=["tagger", "parser", "ner", "attribute_ruler", "lemmatizer"],
 | |
|             )
 | |
| 
 | |
|     def analyse_topic(self, return_topics: int = 3) -> tuple:
 | |
|         """
 | |
|         Performs topic analysis using BERTopic.
 | |
| 
 | |
|         Args:
 | |
|             return_topics (int, optional): Number of topics to return. Defaults to 3.
 | |
| 
 | |
|         Returns:
 | |
|             tuple: A tuple containing the topic model, topic dataframe, and most frequent topics.
 | |
|         """
 | |
|         try:
 | |
|             # unfortunately catching exceptions does not work here - need to figure out why
 | |
|             self.topic_model = BERTopic(embedding_model=self.nlp)
 | |
|         except TypeError:
 | |
|             print("BERTopic excited with an error - maybe your dataset is too small?")
 | |
|         self.topics, self.probs = self.topic_model.fit_transform(self.list_text_english)
 | |
|         # return the topic list
 | |
|         topic_df = self.topic_model.get_topic_info()
 | |
|         # return the most frequent return_topics
 | |
|         most_frequent_topics = []
 | |
|         if len(topic_df) < return_topics:
 | |
|             print("You requested more topics than are identified in your dataset -")
 | |
|             print(
 | |
|                 "Returning only {} topics as these are all that have been found.".format(
 | |
|                     len(topic_df)
 | |
|                 )
 | |
|             )
 | |
|         for i in range(min(return_topics, len(topic_df))):
 | |
|             most_frequent_topics.append(self.topic_model.get_topic(i))
 | |
|         return self.topic_model, topic_df, most_frequent_topics
 | |
| 
 | |
|     def get_text_dict(self, analyze_text: str) -> list:
 | |
|         """
 | |
|         Extracts text from the provided dictionary.
 | |
| 
 | |
|         Args:
 | |
|             analyze_text (str): Key for the text field to analyze.
 | |
| 
 | |
|         Returns:
 | |
|             list: A list of text extracted from the dictionary.
 | |
|         """
 | |
|         # use dict to put text_english or text_summary in list
 | |
|         list_text_english = []
 | |
|         for key in self.mydict.keys():
 | |
|             if analyze_text not in self.mydict[key]:
 | |
|                 raise ValueError(
 | |
|                     "Please check your provided dictionary - \
 | |
|                 no {} text data found.".format(
 | |
|                         analyze_text
 | |
|                     )
 | |
|                 )
 | |
|             list_text_english.append(self.mydict[key][analyze_text])
 | |
|         return list_text_english
 | |
| 
 | |
|     def get_text_df(self, analyze_text: str) -> list:
 | |
|         """
 | |
|         Extracts text from the provided dataframe.
 | |
| 
 | |
|         Args:
 | |
|             analyze_text (str): Column name for the text field to analyze.
 | |
| 
 | |
|         Returns:
 | |
|             list: A list of text extracted from the dataframe.
 | |
|         """
 | |
|         # use csv file to obtain dataframe and put text_english or text_summary in list
 | |
|         # check that "text_english" or "text_summary" is there
 | |
|         if analyze_text not in self.df:
 | |
|             raise ValueError(
 | |
|                 "Please check your provided dataframe - \
 | |
|                                 no {} text data found.".format(
 | |
|                     analyze_text
 | |
|                 )
 | |
|             )
 | |
|         return self.df[analyze_text].tolist()
 | 
