
Agentless
Post-Exploitation on
Device Guarded Systems

@ChrisTruncer

◉ Sys Admin Turned Red Teamer
for Mandiant

◉ Open Source Software
Developer
○ Veil-Framework
○ WMImplant :)
○ ...and others

WHOAMI

What is this talk about?

◉ Device Guard - What is it?
◉ WMImplant - How it works
◉ Post-Exploitation with WMImplant
◉ Questions

Device Guard
What is it?

“

Device Guard is the previously unnamed feature
we blogged about that gives organizations the

ability to lock down devices in a way that
provides advanced malware protection against
new and unknown malware variants as well as

Advanced Persistent Threats (APT’s).

Device Guard - What is it?

◉ Device Guard is a defensive technology built
into Windows 10 and Server 2016
○ Free
○ Only Win 10+ and Server 2016+

◉ A shift in thinking for blocking malicious
applications
○ Not - Let it run unless detected as bad
○ Is - Block everything unless trusted
○ YOU - Define what is trusted

Device Guard - What is it?

◉ Can provide flexibility in defense - you
define/update the policy
○ More modern your environment, the easier

◉ What happens when there is a Device Guard
bypass?
○ Just block it!

◉ Device Guard uses “code integrity” policies to
define what is trusted

Device Guard - Get Started?

◉ Don’t know where to start with Device Guard
or Code Integrity policies?

◉ Matt Graeber is curating a baseline code
integrity policy for all to use!
○ https://github.com/mattifestation/DeviceGuardBypassMitigationRules

https://github.com/mattifestation/DeviceGuardBypassMitigationRules
https://github.com/mattifestation/DeviceGuardBypassMitigationRules

Code Integrity Policies

◉ Code Integrity policies can be distributed
throughout your domain
○ GPO
○ SCCM

◉ Code Integrity policies are largely based on
digital signatures

◉ Unsigned applications require catalog files
which are tied into code integrity policies

Code Integrity Policies

◉ Catalog files downside - any update requires
an update to your catalog files
○ Just use digital signatures :)

◉ Your code integrity policies should also be
signed - don’t let an attacker modify trust

◉ Code integrity policies are just XML code,
eventually converted to a binary format
○ Distribute the binary format

Create a policy

◉ The easiest way to create a code integrity
policy is with PowerShell

◉ Carlos Perez and Matt Graeber have
walkthrough for creating your own code
integrity policy
○ https://gist.github.com/darkoperator/7d5b85354c0343c7554e

○ http://www.exploit-monday.com/2016/09/introduction-to-windows-device-guard.html

https://gist.github.com/darkoperator/7d5b85354c0343c7554e
https://gist.github.com/darkoperator/7d5b85354c0343c7554e
http://www.exploit-monday.com/2016/09/introduction-to-windows-device-guard.html
http://www.exploit-monday.com/2016/09/introduction-to-windows-device-guard.html

Create a policy - In a nutshell

◉ The easiest way is to use the New-CIPolicy
PowerShell cmdlet

◉ You specify the granularity of the file rule
levels along with this cmdlet
○ File Hash
○ File Name
○ Publisher
○ FilePublisher
○ etc.

Create a policy - In a nutshell

◉ After the policy is generated, you convert the
XML output to binary with
ConvertFrom-CIPolicy

◉ Generally, deploy in audit mode first
○ Non-blocking
○ Generates event log events

◉ Deploy this in audit mode, and let Windows
generate data for you

Create a policy - In a nutshell

◉ After enough data has been generated, review
the Device Guard event logs

◉ Determine if any rule modifications are needed
to your code integrity policy

◉ Deploy in enforcement mode
○ This is when it gets real :)

Code Integrity Pro-Tips

◉ Start on fixed functionality systems
○ Web Servers
○ Database Servers
○ POS Systems

◉ Minimal code integrity policy changes
◉ After seeing immediate results, look to user

environments

PowerShell
and Device Guard

Constrained Language Mode

◉ Device Guard auto-enrolls PowerShell into
Constrained Language mode
○ Originally developed for use on Windows RT
○ Pure PowerShell functionality is allowed, but

datatypes are whitelisted
○ .Net methods are only allowed on whitelisted

datatypes

Attacking Device Guard
Best Approaches

Constrained Language Mode

◉ How can you attack a Device Guard protected
system?

◉ Develop a bypass!
○ Most people will trust Microsoft signed binaries!
○ Abuse existing applications!
○ This also takes R&D time
○ Effective at first, but could be blocked via an

updated code integrity policy

Constrained Language Mode

◉ Another option - live off the land!
◉ Why not operate within the constraints of

Device Guard?
◉ Attackers can make assumptions about what

would be allowed
○ PowerShell
○ WMI

◉ Let’s repurpose these :)

WMImplant
What is it?

WMImplant

◉ Developed in PowerShell
◉ Exclusively leverages WMI

○ Means to trigger actions
○ Encoding
○ Data storage :)

◉ Menu and commands are designed to be
similar to Meterpreter

◉ WMImplant translates all commands to their
WMI equivalent transparently

What’s WMI

◉ WMI == Windows Management
Instrumentation

◉ Installed and enabled by default on Windows
since Windows 2000

◉ Enables admins to query local and remote
systems for diagnostic and administrative
purposes

WMImplant & Device Guard

◉ WMImplant was designed to work against
Device Guarded system

◉ PowerShell Constrained Language Mode?
○ WMImplant is 100% compliant with it

WMImplant & Device Guard

◉ Post-Exploitation requires data encoding and
storage
○ Upload/Download files
○ Modify/Store binary data

◉ This needs to be solved

Data Encoding

◉ Easiest data encoding method?
◉ Base64!

○ [Convert]::ToBase64String()

◉ This resulted in a problem...

Data Encoding

◉ Daniel Bohannon to the rescue!
◉ $encode = [Int[]][char[]]$input -Join ','

○ Array of char -> array of int -> CSV
○ Slight mod required for binary data, but it works!

◉ $decoded = [char[]][int[]]$encode.Split(',') -Join ''

Data Storage

◉ Encoding == Solved
◉ Storage?
◉ Original WMImplant used the

registry
○ Easily modifiable

◉ But… a lot of tools can detect
this

◉ It’s also easily parsable

Data Storage

◉ Matt Dunwoody brought up APT 29
○ Leveraged custom WMI classes and properties

◉ Matt Graeber already wrote code to do this!

Data Storage

◉ This introduced another problem...

Data Storage

◉ Strange problem
○ Custom class creation is allowed
○ Property creation is not
○ Not what I expected

◉ WMI for C2 is likely not an option…
◉ Unless...

Data Storage

◉ Sticking with the “repurposing” theme..
◉ What if I can leverage an existing WMI

property?
◉ A couple requirements

○ String datatype
○ No length limitations
○ Modifiable in Constrained Language mode
○ Won’t blue screen the box

Data Storage

◉ Modified an existing script to do just that
○ https://gist.github.com/ChrisTruncer/f3fe3f04b9fdd1310507363f8bdad8be

◉ Limited results
◉ Fixed data length issues
◉ “Generic Failure” messages

https://gist.github.com/ChrisTruncer/f3fe3f04b9fdd1310507363f8bdad8be
https://gist.github.com/ChrisTruncer/f3fe3f04b9fdd1310507363f8bdad8be

Data Storage

◉ And then there was one
○ Win32_OSRecoveryConfiguration

◉ Class used for Windows Crash Dumps
○ Location of dump
○ Type of information collected

Data Storage

◉ DebugFilePath property
○ The location Windows stores a crash dump
○ String
○ Writable

Data Storage

◉ Does not look usable
◉ It’s a file path
◉ Likely limited in length
◉ Path may be validated

◉ That’s what it looks like...

Data Storage

◉ Excellent!
◉ Validates that we can write arbitrary strings to

the DebugFilePath property
◉ This supports the encoder
◉ What about length?

Data Storage

◉ This is everything that I need
◉ Writable string property
◉ Writable in Constrained Language mode
◉ Not fixed in length (over 256+ megabytes)
◉ Doesn’t blue screen the box :)

C2 Comms Outlined

◉ Retrieve the remote machine’s DebugFilePath
property value

◉ Use WMI to execute a command on the remote
machine

◉ Encode the results of the command and store in
the DebugFilePath Property

C2 Comms Outlined - Cont.

◉ Query the remote system to retrieve the
modified DebugFilePath property

◉ Decode the value and display the results to the
console

◉ Set the DebugFilePath property back to its
original value

C2 Comms Outlined

◉ Most of WMImplant’s commands will not
require data storage

◉ WMImplant will parse the output to obtain the
required results

◉ In the event data storage is required…
○ Goto -2 slides

WMImplant
Post-Exploitation

Start with the basics

◉ What do we care about?
○ The users currently on a box!

◉ How is this done?
○ PowerView
○ Beacon/Meterpreter - Compromise the box

◉ Another option
○ active_users

Active_Users

◉ Does not use WMI storage
◉ Pulls a list of all running processes on targeted

system
◉ Sorts and uniques process owners

What’s next?

◉ Do you care if the user is currently active on
your target?
○ Might not matter

◉ What if you want interactive use of the system?
◉ Can you easily determine if the user is active?
◉ WMImplant can try

○ vacant_system

Vacant_System

◉ Pulls active processes searching for:
○ Logonui.exe - logon prompt
○ *.scr - screen saver

◉ If not found, likely user is active on the system
◉ One more check…

○ Win32_operatingsystem

◉ Pull “username” property from object output
○ Currently logged in user to the console
○ If present, user is active

Vacant_System

Search for files?

◉ Everyone has a passwords.txt file on their
system..
○ Right?

◉ Easy win
◉ WMImplant can search any drive for you!

○ Filename
○ File extension
○ Wildcards

File Search

Search for files?

◉ Function returns the object containing the
results

◉ What if you want a copy of all the results?
○ You searched for *passwords*
○ *.sql
○ pass*.txt

◉ One-liner to the rescue!

Search for files?

Invoke-WMImplant -Search -RemoteDrive C:
-RemoteExtension ps1 -ComputerName 172.16.60.177 |

 foreach-object { Select-String -Pattern "password" -Path
$_.Name } |

foreach-object { $_.Path } |

Sort-Object | Get-Unique |

Copy-Item -Destination C:\Users\flynn\Desktop\test

Search for files?

◉ Searches for all *.ps1 files on the system
◉ Searches for the string “password” in all files
◉ Sorts the results
◉ Uniques them
◉ Copies the uniqued results to a folder

Win 8 - Want Creds?

◉ Win 8+ does not have “UseLogonCredential”
registry key set
○ This is to block the system from caching logon

credentials

◉ Want to enable this?
◉ WMImplant can help!

File Search

Remote PowerShell

◉ WMI is usually “blind execution”
○ You don’t see your output

◉ We can already run PowerShell
◉ We can already use WMI for data storage
◉ Why not get PowerShell script output?
◉ Remote_Posh enables just that

Remote PowerShell

Detection & Prevention

◉ PowerShell namespace permissions
○ Don’t allow remote access

■ Thanks Matt Graeber!

◉ UprootIDS - Can help try to perform detection
of malicious WMI activity

◉ VLAN your network

Future Work

◉ Observe Device Guard and whitelist bypasses
in the wild
○ Add them in

◉ Slowly build out additional functionality via
WMI
○ Shadow Copies
○ etc.

Any questions ?
Reach out to me!

◉ @ChrisTruncer
◉ https://github.com/ChrisTruncer/WMImplant
◉ https://www.christophertruncer.com

Thanks!

https://github.com/ChrisTruncer/WMImplant
https://github.com/ChrisTruncer/WMImplant
https://www.christophertruncer.com
https://www.christophertruncer.com

