
Zhiniang Peng of 360 Core Security
@Opcde 2019

Danger of using fully homomorphic
encryption: A look at Microsoft SEAL

Who am I

Zhiniang Peng

Ph.D. in cryptography

Security researcher @Qihoo 360

Twitter: @edwardzpeng

Research areas:

Software security

Applied cryptography

Threat hunting

About the topic

Introduction to homomorphic encryption

Introduction to SEAL

Security pitfalls of SEAL

CCA attack on BFV

Data recovery against FPSI

Circuit privacy of SEAL

Information leakage

Countermeasures

Other issues

Conclusion

Computing on encrypted data

Data leakage become more serious nowadays

Data security, privacy become a public concern

It will be nice to be able to….

Encrypt my data before sending to cloud

Allow the cloud to search/sort/edit the data on my behalf

Keep the data in cloud in encrypted form

Without needing to ship it back and forth to be decrypted

Computing on encrypted data

It will be nice to be able to….

Encrypt my query to the cloud

While still allowing the cloud the process them

Cloud returns encrypted answers

that I can decrypt

This picture is from duality.cloud

Homomorphic addition

E(a) E(b) E(a+b)

compute

compute

encryptencrypt

a, b a+ b

E(a), E(b)

Pure RSA support homomorphic addition!

Homomorphic multiplication

E(a) E(b) E(ab)

compute

compute

encrypt

a, b a x b

E(a), E(b)

encrypt

Pure Elgamal support homomorphic multiplication!

Fully homomorphic encryption

compute

compute

encrypt

x1, …, xn F(x1,...,xn)

E(x1),…, E(xn)
F(E(x1),…, E(xn))=E(f(x1,…xn))

encrypt

Pure Elgamal support homomorphic multiplication!

Protecting Data via Encryption
A famous metaphor

1. Put your gold in the locked box
2. Keep your key
3. Let the jewelry worker work on it through a glove box
4. Unlock the box and get the result

Applications of HE

Outsourcing computation

Machine learning on encrypted data

Private cloud storage+computation service

There are two kinds of applications:

private data, public function

private data, private function

Private data, Public function

This picture is from duality.cloud

Data should be kept secret.
The function f can be public.

Disease prediction

•All data uploaded to the server encrypted under
patient’s public or private key

•Cloud operates on encrypted data and returns
encrypted predictive results

private data, public function

Private data , Private function

This picture is from duality.cloud

Both data and the model should be kept secret.
Circuit privacy:

An additional requirement in many FHE applications is that
the evaluated ciphertext should also hide the function f.

Quick Background

Homomorphic Encryption library from Microsoft Research

First version released in 2015; currently at version 3.2

Available at https://GitHub.com/Microsoft/SEAL (MIT license)

Developed in standard C++

Implements BFV and CKKS schemes

Simple and easy to use

Comes with detailed examples

https://github.com/Microsoft/SEAL

Performance of SEAL
CryptoNets (2016)

MNIST handwritten digit classification

60,000 encrypted predictions per hour; 16 per second

99% accuracy

Today can be done probably 100-1000x faster

Our experiments

Logistic regression prediction
10,000 pieces of data in 5 minutes

300 times slower than using sklearn directly on plaintext

Summing 100,000,000 random floats between 0 and 100
860 ms; 8.1x message expansion rate: sizeof(encrypted)/sizeof(plain)

Seems reasonable

Ring-LWE

Ring R=Zq[x]/(x^n+1)

Given:

a1, b1 =a1 · s+e1

a2, b2=a2 · s+e2

…

ak, b3=ak · s+ek

Find: s

s is random in R

ei are “small” (distribution symmetric around 0)

To make it simple to understand
you can think all of these are integers

Decision Ring-LWE

Ring R=Zq[x]/(x^n+1)

Given:

a1, b1

a2, b2

…

ak, bk

Question: Does there exist an s and “small”
e1, … , ek such that bi=ai · s+ei

or are all bi uniformly random in R?

BFV key pair

SecretKeyGen():

sample secret key s∈ χ

PublicKeyGen(s):

sample a ∈ Rq, e ∈ χ

pk0 = −(a · s + e) pk1= a

Ring-LWE pair
s cannot be recovered

Over-simplified!
You can think all these are integers

BFV encryption

Encrypt(m): sample u ∈ Rq , e1 e2 ∈ χ

c0= pk0 · u + e1 + ∆ · m, c1= pk1 · u + e2

c0= −(a · s + e) · u+e1+ ∆ · m, c1= a · u + e2

c0 =-w · s +e1+e · u+ ∆ · m , c1= w + e2

Decision Ring-LWE pair (cannot be distinguished with random value)
Message m is encrypted with a random pad

Replace pk with (−(a · s + e), a)

Ciphertext can be consider as a polynomial:
f(x)=c0+c1*x

BFV decryption
Decrypt(c):

f(x)=c0+c1 · x

f(s)=c0+c1 · s

Replace c with =([-w · s +e1+e · u+ ∆ · m]q, [w + e2]q)

f(s)=-w · s +e1+e · u+ ∆ · m + (w + e2) · s

=e1+e · u+e2 ·s+ ∆ · m

Much smaller than ∆
Then we can recover m

substitute x with s

We can think that:
f(s)= v + ∆ · m

where v is much smaller than ∆

Homomorphic addition

Homomorphic addition:

Ciphertext1: f1(x)

Ciphertext2: f2(x)

Compute: f3(x)=f1(x)+f2(x)

We have:

f1(s)=v1+ ∆ · m1

f2(s)=v2+ ∆ · m2

Then decrypt f3(x):

f3(s)=f1(s)+f2(s)=v1+v2+ ∆ · (m1+m2)

=v3+ ∆ · (m1+m2)

E(m1) E(m2) E(m1+m2)

Homomorphic multiplication

Homomorphic multiplication:

Ciphertext1: f1(x)

Ciphertext2: f2(x)

Compute: f3(x)=f1(x)*f2(x)

We have:

f1(s)=v1+ ∆ · m1

f2(s)=v2+ ∆ · m2

Then decrypt f3(x):

f3(s)=f1(s)*f2(s)=v1 · v2+ ∆ · (v1 · m2+ v2· m1)+∆2 · m1 · m2

Divide by ∆ , we can get:

f3(s)/ ∆= v3+ ∆2· (m1 · m2)

E(m1) E(m2) E(m1·m2)

More about BFV scheme

This is just a over simplified version of BFV

But enough to make you us understand the problems

For more details about BFV

Read the paper:
Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapsvp. In: CRYPTO 2012 - Volume 7417. pp. 868–886 (2012)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144 (2012)

You can play with BFV

I write a sage version of simplified BFV

https://github.com/edwardz246003/danger-of-using-homomorphic-
encryption/blob/master/BFV.py

https://github.com/edwardz246003/danger-of-using-homomorphic-encryption/blob/master/BFV.py

Security of BFV scheme

Encrypt message m to an polynomial f(x)

Decrypt by substitute x with s

get f(s)=v+Δ · m, can recover m easily

Message is “blind” by Ring-LWE pair + noise

Distinguish ciphertext → distinguish Ring-LWE pair

Provable security: IND-CPA → Ring-LWE

Chosen plaintext attack

If someone break IND-CPA, he can break Ring-LWE

Ring-LWE is supposed to be a hard math problem

IND-CCA?

Chosen ciphertext attack

Attacker is given access to a decryption oracle

BFV doesn't have IND-CCA security

All practical FHE cannot guarantee IND-CCA

Homomorphic property seems to conflict with CCA

Theoretical research on CCA FHE

Chosen-Ciphertext Secure Fully Homomorphic Encryption

No FHE implementation can guarantee security in the
IND-CCA scenario

IND-CCA Scenario

Why need IND-CCA

Attacker may be able to ask for a decryption in real scenario

IND-CCA is a standard requirement for normal encryption schemes

Scenarios that require HE often require IND-CCA

Outsourced computation by HE seems in CPA model

Rich data flows between data-owner and cloud

Multi-party’s cooperation and data exchange

If certain decrypted data is leaked to the cloud

break the CPA model, need CCA security

One query attack

Suppose attacker can query decryption oracle 1 time

Realistic in many scenarios

Ask to decrypt a malicious ciphertext f(x)

f(x)=c0+c1x with c0=0, c1=Δ

Decryption substitutes x with s

We get: f(s)=Δs

Then decrypted message equal to s (private key)

Recover private key with only one query

Extremely dangerous

Other FHE schemes face the same problem

Demo of one query attack

Default parameter of SEAL

https://github.com/edwardz246003/danger-of-using-homomorphic-
encryption/blob/master/CCA_attack.py

https://github.com/edwardz246003/danger-of-using-homomorphic-encryption/blob/master/CCA_attack.py

Countermeasures

Never use HE in any scenario where decrypted
result may leak to evaluator.

Otherwise, there is no encryption at all.

The decrypted result may leak to evaluator in many
scenarios, with or without being noticed.

But how can we make sure there is no leakage?

Collaboration with Microsoft SEAL team on building
new types of mitigations for this issue.

Should be available shortly in SEAL.

Private Set Intersection (PSI)

Without leaking anything else

App: Contact discovery

Private contact discovery on E2EE IM (Signal…)

Using HE to build PSI
FPSI in CCS17 (oversimplified)

Encrypt(X) with HE

Send Encrypted X to Server

Compute with local database Y,
get the encrypted X∩Y

Send Encrypted X∩Y to Client

Decrypt the result,
Get the X∩Y

local database Y

CCA attack on this scenario

After client get X∩Y.
He found out that X∩Y are also using signal.

Then he add them as friends
X∩Y in plaintext

Information leakage to server.
Server can launch CCA attack!

Lesson learned:
There are always unexpected data flows between data-owner and cloud.
Be extremely careful when using homomorphic encryption.

1 bit leakage

Difference from previous CCA attack

User will check whether the decryption result is 0

So only 1 bit information leakage per query

We can reveal 1 bit of user’s private key using this 1 bit information
leakage.

Data owner do not need to leak the plaintext to the attack, any
1bit information leakage will lead to 1 bit key leakage

Security of BFV will drop exponentially

1 bit information leakage is Inevitable in real life application

It’s very dangerous

Demo of CCA attack (1 bit infoleak)

Any 1bit information leakage will lead to 1 bit key leakage

https://github.com/edwardz246003/danger-of-using-homomorphic-
encryption/blob/master/CCA_attack.py

https://github.com/edwardz246003/danger-of-using-homomorphic-encryption/blob/master/CCA_attack.py

Another attack

Encrypt(X) with HE

Send Encrypted X to Server

Compute with local database Y; get the encrypted X∩Y .
But most of the HE have no circuit privacy.
Other information except X∩Y may also leak.

Send Encrypted X∩Y to Client

Client decrypt the result,
Get the X∩Y
Also get other information on Y

local database Y

More details can be found in the paper

Circuit Privacy of SEAL

SEAL doesn’t provide circuit privacy on default

Addressed in FPSI paper and in old SEAL manual (no longer available)

Best practice is “noise flooding”

adding an encrypted 0 to the final result, with “enough” noise

But there is no standard interface of “noise flooding” in SEAL

normal software developer definitely can’t play with the magic

Hardness of providing “noise flooding”

Need to know how much noise is needed, this is also some
kind of information we need to protect. :(

All practical FHE lib seems have the circuit privacy problem

There are ad hoc workarounds but no generic solution
Solutions require crypto expertise to implement

Countermeasures

An improved PSI protocol is published in CCS18

https://eprint.iacr.org/2018/787

Solve the PSI problem

Non-generic solution

As for circuit privacy of SEAL and HE

You need a crypto expert to review your implementation

Professional knowledge on lattice-based crypto

SEAL team is considering a standard interface to deal with this issue

https://eprint.iacr.org/2018/787

Coding Information Disclosure in SEAL

HE is working on a polynomial ring based on finite field

plaintext is integer, float or string

we need convert them to the ring

IntegerEncoder of SEAL

Encode an integer to a polynomial

Many to one mapping

Information leakage!

More details can be found in the paper.
I think you don’t want the mathematical formula here.

Demo of Encoder

Attack on millionaire problem:
https://github.com/edwardz246003/danger-of-using-homomorphic-

encryption/blob/master/millionaire.py

Demo of information leakage of
IntegerEncoder in SEAL

We have m1 and m2. We want:
result= m1 + m2

For m1=2 and m2=2, we have
result = 4

For m1=1 and m2=3, we have
result = 4

But the encoded form are different!
2*X != X+2

https://github.com/edwardz246003/danger-of-using-homomorphic-encryption/blob/master/millionaire.py

Countermeasures

Coding problem may also affect other HE lib

Be careful when using encode functionality provided by HE libraries

The crypto part have a security proof, but the encoding may not

Don’t use IntegerEncoder in SEAL without understanding
security model

IntegerEncoder is primarily a demonstrative tool

BatchEncoder and CKKSEncoder don’t have this issue

Other security issues

HE does not provide the security features as the commonly
known encryption algorithms

HE is not an Authenticated Encryption

Cannot guarantee the integrity of the data

Attacker can use homomorphic nature of HE to modify ciphertext

Don’t use HE for storage and data transmission directly

Consider wrapping HE traffic e.g. inside TLS

We need a standard documentation for HE

Microsoft is currently leading the development of standard for HE

Important to include protocol security topics to standard!

Can FHE really compute arbitrary functions?

compute

compute

encrypt

x1, …, xn F(x1,...,xn)

E(x1),…, E(xn)
F(E(x1),…, E(xn))=E(f(x1,…xn))

encrypt

Arbitrary function in FHE means arbitrary
addition and multiplication here.

Arbitrary addition and multiplication does not
mean you can run arbitrary program

You can’t do comparison directly
(if branch is not support here)

Update the famous metaphors

1. Put your gold in the locked box This box should be opaque!
2. Keep your key
3. Let the jewelry worker work on it through a glove box
with eyeshade
4. Unlock the box and get the result

Conclusion

HE is a useful in many scenarios

Its performance is improving and acceptable

HE is not omnipotent

It can not run arbitrary program

HE has many security pitfalls

It is extremely dangerous to use HE without a crypto
expert for now.

Community needs to focus on building secure protocols.

Acknowledgements

We would like to thank

Kim Laine of Microsoft Research

Chen Hong of Alibaba Gemini Lab

For their valuable comments and suggestions to the talk

谢 谢！

