

trade war
willi ballenthin

as a malware analysts, we see thousands of samples per year

over time, we recognized common features

eventually, we encode generalized features to find more malware

#thoughtleadership

• shellcode typically not used by legitimate programs

• often used by exploits (not our focus) and stagers/backdoors

• as we’ll see, commonly found in hybrid content
• e.g. inside docx -> exploit

• worthwhile to hunt shellcode

.EXE and .DLLs rely on the Windows loader to place them in memory

this includes:

• ensuring two modules are not loaded at the same address, and

• doing any necessary fixups if not at preferred memory address

result: code can directly reference global memory addresses

shellcode: position independent

that is, shellcode makes no assumptions about its load address

why?
• during exploitation, there may be limited control over memory allocation

• easier to package, distribute, and use across various stagers

therefore, shellcode cannot use hardcoded global memory addresses
• shared data in shellcode: C2 addresses, targeted users or programs, etc.

instead, must find load address at runtime & use relative addressing
• where are we currently executing?

• compute delta between current and expected addresses

• shift references to global variables by this delta

shellcode

program logic

configuration

unknown load address

$PC

shellcode

program logic

configuration

unknown load address

offset from $PC to load address
(constant)

$PC

shellcode

program logic

configuration

unknown load address

offset from load address to config
(constant)

$PC

oddly, in x86-32, there is no instruction mov eax, eip

instead, two common shellcode tricks:

0xD316 - 0x36 = 0xD2E0
$PC delta load address

shellcode

program logic

configuration

load address

offset from $PC to load address
(constant)

$PC

0xD316

0xD316 - 0x36 = 0xD2E0
$PC delta load address

0x36

0xD2E0

0xD2E0 + 0x190 = 0xD470
load address delta config address

shellcode

program logic

configuration

load address

$PC

0xD2E0

0xD2E0 + 0x190 = 0xD470
load address delta config address

offset from load address to config
(constant)

config address

0xD470

0x190

.EXE and .DLLs rely on the Windows loader to resolve imports

this includes:

• loading other DLLs that provide dependencies and finding function addresses

• updating the in-memory import table

result: code can interact with the system

shellcode doesn’t know where its loaded, let alone have imports

therefore, shellcode must manually resolve imports
• due to ASLR, cannot just assume address of CreateFileA

typically: manually parse runtime structures to find function pointers
• this is basically doing live memory forensics on itself

TEB
openssl.dll

export table

encryption
logic

shellcode

program logic

PEB

LDR_DATA

modules list

winhttp.dll

export table

HTTP
protocol logic

open 1

close 2

send 3

Thread
Environment

Block
(TEB)

Load
Order List

Initialization
Order List

Memory
Order List

Process
Environment

Block
(PEB)

PEB
Loader

Data

0x30 0xC 0xC

0x14

0x1C

FS segment

Lists of loaded modules (DLLs)

Thread
Environment

Block
(TEB)

Load
Order List

Initialization
Order List

Memory
Order List

Process
Environment

Block
(PEB)

PEB
Loader

Data

0x14

0x1C

FS segment

Lists of loaded modules (DLLs)

0xC0x30 0xC

Thread
Environment

Block
(TEB)

Load
Order List

Initialization
Order List

Memory
Order List

Process
Environment

Block
(PEB)

PEB
Loader

Data

0x14

0x1C

FS segment

Lists of loaded modules (DLLs)

((*(fs + 30) + 0xC) + 0xC)

0xC0x30 0xC

((*(fs + 30) + 0xC) + 0xC)

((*(fs + 30) + 0xC) + 0xC)

((*(fs + 30) + 0xC) + 0xC)

((*(fs + 30) + 0xC) + 0xC)

((*(fs + 30) + 0xC) + 0xC)

✔

✔

✔

javascript
(exploit?)

shellcode
(Metasploit)

.exe
(???)

😢

efficacy:

across MSDN & NSRL,
8 FPs, all in RPC code

for example:

• opsec problem: names of routines to resolve stored in plaintext

• performance problem: names of routines to resolve are long

• common solution: use fixed-length hash of routine name

TEB
openssl.dll

export table

encryption
logic

winhttp.dll

export table

HTTP
protocol logic

shellcode

program logic

PEB

LDR_DATA

modules list

hash

0x7c0d3a06

0xd4db8b88

open 1

close 2

send 3

0x7c0d3a06 = HASH(“open”)

???

string decoder routine

• tedious to analyze

• tight, loopy, arithmetic logic

• called a bunch with few args

• “referentially transparent”

hash resolver routine

• tedious to analyze

• tight, loopy, arithmetic logic

• called a bunch with few args

• “referentially transparent”

https://asciinema.org/a/EaHLv3yy7nGnh7mfHQ5DVy1LJ?theme=solarized-light

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

kernel32.dll, wininet.dll, …

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

CreateFile, DeleteFile

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

0xAAAAAAAA

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

computed hash

query hash

1. map shellcode, stack region

2. map PE header
1. emit TEB, PEB, LDR_DATA structures

2. map DLLs and add to loaded lists (eg. InMemoryOrderModuleList)

3. identify hash resolver routine

4. emulate shellcode until the start of hash resolver routine

5. “taint” the hash argument (i.e. record it somewhere)

6. with temporary context, emulate hash resolver routine
1. instrument instructions to collect comparisons to tainted value

e.g. cmp eax=0xTAINTED, ebx=0x12345

2. then, ensure comparisons fail

7. finally, re-run resolver with collected values

8. the malware does the work for us!

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash: 0xAAAAAAAA

CreateFile

• 0x12345678

0x12345678

kernel32.dll

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash: 0xAAAAAAAA

DeleteFile

• 0x12345678
• 0x9ABCDEF0

0x9ABCDEF0

kernel32.dll

5. “taint” the hash argument (i.e. record it somewhere)

6. with temporary context, emulate hash resolver routine
1. instrument instructions to collect comparisons to tainted value

e.g. cmp eax=0xTAINTED, ebx=0x12345

2. then, ensure comparisons fail

7. finally, re-run resolver with collected values

8. the malware does the work for us!

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

0x12345678

• 0x12345678
• 0x9ABCDEF0
• …

0x12345678 → CreateFile

CreateFile

kernel32.dll

for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

0x9ABCDEF0

• 0x12345678
• 0x9ABCDEF0
• …

0x9ABCDEF0 → DeleteFile

DeleteFile

kernel32.dll

