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as a malware analysts, we see thousands of samples per year

over time, we recognized common features

eventually, we encode generalized features to find more malware



#thoughtleadership

• shellcode typically not used by legitimate programs

• often used by exploits (not our focus) and stagers/backdoors

• as we’ll see, commonly found in hybrid content
• e.g. inside docx -> exploit

• worthwhile to hunt shellcode







.EXE and .DLLs rely on the Windows loader to place them in memory

this includes:

• ensuring two modules are not loaded at the same address, and

• doing any necessary fixups if not at preferred memory address

result: code can directly reference global memory addresses











shellcode: position independent

that is, shellcode makes no assumptions about its load address

why? 
• during exploitation, there may be limited control over memory allocation

• easier to package, distribute, and use across various stagers





therefore, shellcode cannot use hardcoded global memory addresses
• shared data in shellcode: C2 addresses, targeted users or programs, etc.

instead, must find load address at runtime & use relative addressing
• where are we currently executing?

• compute delta between current and expected addresses

• shift references to global variables by this delta
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shellcode

program logic
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oddly, in x86-32, there is no instruction   mov eax, eip

instead, two common shellcode tricks:







0xD316  - 0x36  =  0xD2E0
$PC            delta      load address
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0xD2E0 +  0x190  =  0xD470
load address delta config address
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.EXE and .DLLs rely on the Windows loader to resolve imports

this includes:

• loading other DLLs that provide dependencies and finding function addresses

• updating the in-memory import table

result: code can interact with the system







shellcode doesn’t know where its loaded, let alone have imports

therefore, shellcode must manually resolve imports
• due to ASLR, cannot just assume address of CreateFileA

typically: manually parse runtime structures to find function pointers
• this is basically doing live memory forensics on itself
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(exploit?)
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.exe
(???)



😢



efficacy:

across MSDN & NSRL,
8 FPs, all in RPC code

for example:







• opsec problem: names of routines to resolve stored in plaintext

• performance problem: names of routines to resolve are long

• common solution: use fixed-length hash of routine name
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string decoder routine

• tedious to analyze

• tight, loopy, arithmetic logic

• called a bunch with few args

• “referentially transparent”

hash resolver routine

• tedious to analyze

• tight, loopy, arithmetic logic

• called a bunch with few args

• “referentially transparent”



https://asciinema.org/a/EaHLv3yy7nGnh7mfHQ5DVy1LJ?theme=solarized-light


for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

kernel32.dll, wininet.dll, …



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

CreateFile, DeleteFile



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

0xAAAAAAAA





for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address



computed hash

query hash



1. map shellcode, stack region

2. map PE header
1. emit TEB, PEB, LDR_DATA structures

2. map DLLs and add to loaded lists (eg. InMemoryOrderModuleList)

3. identify hash resolver routine

4. emulate shellcode until the start of hash resolver routine 



5. “taint” the hash argument (i.e. record it somewhere)

6. with temporary context, emulate hash resolver routine
1. instrument instructions to collect comparisons to tainted value

e.g. cmp eax=0xTAINTED, ebx=0x12345

2. then, ensure comparisons fail 

7. finally, re-run resolver with collected values

8. the malware does the work for us!



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash: 0xAAAAAAAA

CreateFile

• 0x12345678

0x12345678

kernel32.dll



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash: 0xAAAAAAAA

DeleteFile

• 0x12345678
• 0x9ABCDEF0

0x9ABCDEF0

kernel32.dll



5. “taint” the hash argument (i.e. record it somewhere)

6. with temporary context, emulate hash resolver routine
1. instrument instructions to collect comparisons to tainted value

e.g. cmp eax=0xTAINTED, ebx=0x12345

2. then, ensure comparisons fail 

7. finally, re-run resolver with collected values

8. the malware does the work for us!



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

0x12345678

• 0x12345678
• 0x9ABCDEF0
• …

0x12345678 → CreateFile

CreateFile

kernel32.dll



for dll in get_dlls(get_teb().peb.ldr_data):

for export in dll.exports:

if hash(export.name) == asked_hash:

return export.address

0x9ABCDEF0

• 0x12345678
• 0x9ABCDEF0
• …

0x9ABCDEF0 → DeleteFile

DeleteFile

kernel32.dll










