
Copyright	©	2017	Yinkozi,	Ltd

Practical Attacks against Digital
Wallets

Date: Apr 2017
OPCDE/Dubai
Yinkozi Middle East

Loïc Falletta - Owner & Principal
Consultant
e-mail: loic.falletta@yinkozi.com
mobile: +971 568 348 047

Who I Am

2

LOÏC FALLETTA
Owner and Principal
Security Consultant at
Yinkozi

- Review board ENISA (Mobile Security)
- Review board Cloud Alliance (IoT)
- Digital breaker
- Contacts:

- loic@yinkozi.com
- Twitter: @zavidan

Practical Attacks against digital wallet

mailto:loic@yinkozi.com

Agenda

1. Digital Wallet?

2. Threat Modeling/Attack
Surface

3. Security Levels

4. Let’s break it

3

6. Questions?
45min

Practical Attacks against digital wallet

1 - DIGITAL PAYMENT?

What do you mean by Digital Wallet?

"They store value in digital form and allow an individual to purchase an item online or send funds to friends or family.
Depending on the type of digital wallet used, the information stored might include debit, credit, prepaid or loyalty card data
as well as personal information of the card holder such as driver’s license, health card, loyalty card(s) and other ID documents.
” - ENISA

5

The talk will not cover:
• Mobile Wallet such as Android Pay, Apple Pay and Samsung Pay
• Digital Currency Wallets
• Security of Mobile Payment Providers, Card Issuers, Payment Network Providers, Payment Service, Acquirers,…

The talk will cover:
•Custom Digital wallet
•Contactless Payment Communication Technologies: Magnetic Secure Transmission (MST), Near Field

Communication (NFC), Quick Recognition (QR) Code, Bluetooth, …
•Perspective of Mobile Device, Mobile Application and Communication Layers

Practical Attacks against digital wallet

Threat Modelling / Attack Surface

6Practical Attacks against digital wallet

Script Kiddies: Are you really storing your card’s
information in plain text?

Targeted Attack: Thanks for trusting any Point Of Sale.
That makes my life easier.

Identify theft, 0-day: I can see that you are doing SSL
pinning, too bad that you are using a vulnerable version of
openssl.

APT: I want you and I will get you, even if I will need a year
to do so.

Targeted attack
Active

Persistent
Threat (APT)

Script Kiddies Identity theft
0-day

Skills

Focus How secure you  
want to be with  

your Digital wallet

Threat Modelling / Attack Surface

7Practical Attacks against digital wallet

- Installation of rogue applications and malware
- Unauthorized access to lost or stolen mobile device
- Locked/Unlocked
- Malware installation on the device

- With root permission or not
- Reverse engineering
- Static analysis
- Dynamic analysis
- Tampering with the mobile application

- Actively
- Passively (wait for action)

- Mobile application vulnerability
- Race conditions (bad network)
- Static keys

- Compromised third party
- SDK/Contactless POS/Dependency/Device

- Compromised environment
- Relay attacks against NFC enabled POS contactless terminal

- Data connectivity compromise

1 - Social Engineering
2 - Lost or stolen mobile device
3 - Third party
4 - Environment

Threat Modelling / Attack Surface

8Practical Attacks against digital wallet

Feature Targeted on a Digital Wallet:
•Enrollment
•Credit Card entry
•User authentication
•Third party trust
•Mobile Device configuration
• Implementation issues

source: ENISA

Threat Modelling / Attack Surface

9Practical Attacks against digital wallet

Be able to protect user’s data even if:
- The device is compromised
- Dependencies are compromised
- POS is compromised
- Network is compromised
Don’t forget that:
- The application can still be loaded in memory when the

malware is loaded
- An attacker can wait for you to use the app

Paranoid approach for mobile security:

Security levels requirements

10Practical Attacks against digital wallet

•SSL pinning (field based)
•Permission enforcement
•SQLITE with symmetric encryption
•Basic jailbreak/root detection

For most apps, this is enough… not for a digital wallet.

Level 1: Native application

Security levels requirements

11Practical Attacks against digital wallet

-Critical checks in native can be easily bypassed (example)
-Things are getting serious with SSL pinning. That will slow down most of the attackers. What do
you do when the certificate expire…

-Linking the device with the session will make it hard to duplicate your phone. But if you don’t
have a process on mobile banking to approve a phone, this is useless.

- Public tools can bypass all these security features

•Native application and critical checks in native (like jailbreak/
root detection)
•SSL pinning with SSL stack checks
•SQLITE with complex encryption
•Device linked with the session

Level 2: Native application and critical checks in native

Security levels requirements

12Practical Attacks against digital wallet

Example with Root Detection in Native

Check() inside lib_tests.so

‣ Easy to bypass/reverse if the check is simple

‣ Easy to bypass if the return value is easy to guess

Security levels requirements

13Practical Attacks against digital wallet

-If business logic code is written in native. This is a pain for the attacker. He will need more time
to understand how the application works

-RSA encryption or others will make it hard to access without having a good understand on how it
works

-Once the jailbreak detection is broken, most of the time we still find a way to get infos such as
What’s in, what’s out. And that’s enough some time.

-If the device is linked an approval process in performed we can do things. But it’s getting harder
-Most of the time integrity checks are performed when the application starts… Root the device,
re-link your library in memory and start playing.

•SSL pinning with native code. Low level checks
•SQLITE with complex encryption
•Secure container
•Device linked with the session
•Behavior based on device model
•Secure enclave

Level 3: Native application with critical and some business logic in native

Security levels requirements

14Practical Attacks against digital wallet

Level 3: Native application with critical and some business logic in native

•Reversing is not always
required

•Event Based on native
methods works just fine

•All you need is the input/
output

• FYI: Octopus is a fork of
DroidMon

Security levels requirements

15Practical Attacks against digital wallet

•Obsfucation is only good on critical components. Business
does not want a big application.

• Method name are not always obsfucated. Really hard to
manage dependencies if the project is large. Secure
Container with binary modifications are more efficient.

•When anti-tampering is performed, it’s only performed on
critical methods not on UI components. As an attacker
you can’t modify the method but you can get the data.

•Anti-tampering. A method is not called direct but through a
secure method. Quite heavy and make the application
slow.

•Return to method attack (input/output management).

•Some devices are excluded

-Obsfucation is good… and bad. You will find String obsfucation yes but a fully obsfucated
binary.. never. Digital Wallet are already big, the business never accept to make it 10 times
bigger. So they only obfuscate the “sensitive" features… You can then spot them easily.

-But globally this is where you want to be. It takes time to design and update it properly

Level 3++: Level 3 + obsfucation, Strong integrity checks, Secure container with anti-tampering

Security levels requirements

16Practical Attacks against digital wallet

Level 3++: Level 3 + obsfucation, Strong integrity checks, Secure container with anti-tampering

4 - LET’S

BREAK IT

Techniques to tools

18Practical Attacks against digital wallet

Most of the tools you know will not work (Integrity checks, dynamic linker restrictions,…)

Running the application inside an Emulator is not a good idea. NFC, SIM Card communications,.. are not supported
properly.

Two approaches that currently works to bypass most of the protections:

1) Systemless root for Android:

Since Android 4.3, the “su” daemon the process that handles requests for root access—has to run at startup, and it
has to do so with enough permissions to effectively perform the tasks requested of it. This was traditionally
accomplished by modifying files found on Android’s /system partition.

In the early days of Lollipop, there was no way to launch the su daemon at boot, so a modified boot image was used
(beginning of Systemless root). FYI: Another way has been found later.

- Marshmallow, make it unfeasible to launch the su daemon with the required permissions just by modifying the /
system partition. The systemless method was resurrected, and that’s now the default rooting method for phones
running Marshmallow. It’s also worth mentioning that this is also true for Android N, as well as Samsung devices
running 5.1 (or newer).

Techniques to tools

19Practical Attacks against digital wallet

2) In memory/runtime modifications to the rescue:
- On IOS with Mach Ports and/or with an out-of-process dynamic linker (map

your .dylib into sandboxed processes) - Check Frida-gum project (https://
github.com/frida/frida-gum/). By experience cyscript is great as a standalone
but quickly detected. Things like accessing a bad pointer in Frida gives you a
Javascript exception instead of crashing the application which is very useful.

- Modify app_process to add additional class path and calls method. Just after
the VM has been created, even before the main method of Zygote has been
called. Similar to Xposed framework approach.

3) Avoid binary modifications as much as you can

https://github.com/frida/frida-gum/
https://github.com/frida/frida-gum/

Useful methods to hooks in Android

20Practical Attacks against digital wallet

android.telephony.TelephonyManager
android.net.wifi.WifiInfo
android.telephony.TelephonyManager
android.os.Debug
android.app.SharedPreferencesImpl$EditorImpl
android.content.ContentValues
org.apache.http.impl.client.AbstractHttpClient
android.app.ContextImpl
android.app.ActivityThread
android.app.Activity
dalvik.system.BaseDexClassLoader
dalvik.system.DexFile
dalvik.system.DexClassLoader
dalvik.system.BaseDexClassLoader
dalvik.system.DexFile
dalvik.system.PathClassLoader
javax.crypto.spec.SecretKeySpec
javax.crypto.spec.PBEKeySpec
javax.crypto.Cipher
javax.crypto.Mac
android.app.ApplicationPackageManager
android.app.NotificationManager
android.util.Base64
android.telephony.TelephonyManager
android.util.Base64
android.net.ConnectivityManager
android.content.BroadcastReceiver
android.telephony.SmsManager
java.lang.ProcessBuilder

android.view.Window
android.view.SurfaceView
android.app.ActivityManager
android.os.Process
android.content.ContentResolver
android.accounts.AccountManager
android.location.Location
android.content.ContentResolver
android.media.AudioRecord
android.media.MediaRecorder
android.app.ApplicationPackageManager
android.content.ClipboardManager
android.content.ContextWrapper
java.net.HttpURLConnection
android.content.ContextWrapper
android.app.Activity
android.content.ContextWrapper
android.net.Uri
android.os.Process
android.database.sqlite.SQLiteDatabase
android.content.ContextWrapper
net.sqlcipher.database.SQLiteDatabase
java.io.ObjectInputStream
android.webkit.WebView
libcore.io.IoBridge
android.hardware.fingerprint.FingerprintManager
android.hardware.fingerprint.FingerprintManager
android.hardware.fingerprint.FingerprintManager.AuthenticationCallback
android.webkit.WebView

Android/IOS in-app fingerprint

21Practical Attacks against digital wallet

•Different than the screen unlock
•The fingerprint is used to unlock a secret
•The secret is stored in the secure enclave, without the good fingerprint you
can’t unlock the secret
•However, by waiting for the user to unlock his app, you can get the secret

Samsung PASS framework

22Practical Attacks against digital wallet

•One unique catalog for all fingerprints
•The application can detect if a fingerprint is installed
•The application can detect if a newFingerprint has been installed since the
last time the application was running through in index id table
•If the situation did not change, then the authentication process can start.

Cf: http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/SpassFingerprint.html

Android in-app fingerprint

•The fingerprint is used to unlock a secret
•The secret is stored in the secure enclave, without the good fingerprint you
can’t unlock the secret
•You can have one catalogue managed by the application separated from the
system
•If the fingerprint authentication is successful, the Android return
onAuthenticationSucceeded through an AuthenticationCallback and
onAuthenticationFailed otherwise
•Event based so if the device is compromised, you can wait for a user to
unlock his app, you can get the secret

Samsung PASS framework

http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/SpassFingerprint.html

Evil Partner attack on Samsung S5

23Practical Attacks against digital wallet

•One unique catalog for all fingerprints
•The application can detect if a fingerprint is installed
•The application can detect if a new Fingerprint has been
installed since the last time the application was running through
in index id table
•If the situation did not change, then the authentication process can
start.

Cf: http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/SpassFingerprint.html

Let’s explore this:
- It can detect some kinds of fingerprint catalog change like

adding a new fingerprint
- But… DEVICE_FINGERPRINT_UNIQUE_ID is not supported on

Samsung S5.
- Is that meant they only check the size of the index table?

http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/SpassFingerprint.html
http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/Spass.html#DEVICE_FINGERPRINT_UNIQUE_ID

Evil Partner attack on Samsung S5

24Practical Attacks against digital wallet

•So if a partner knows your pattern/pin to unlock your phone he can:
•Unlock your phone
•Go to your fingerprint management menu
•Remove one of the fingerprint
•Add her fingerprint
•Go to the Digital Wallet application
•Put his finger on the Digital Wallet authentication page… he will be
authenticated.

Cf: http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/SpassFingerprint.html

http://developer.samsung.com/onlinedocs/sms/pass/com/samsung/android/sdk/pass/SpassFingerprint.html

HCE(Host Based Card Emulation) attacks

25Practical Attacks against digital wallet

HCE(Host Based Card Emulation) attacks

26Practical Attacks against digital wallet

1. The customer registers and acquires the card
credentials either through a mobile app or using the
provider’s secure Web-based service (such as a bank’s
Internet banking site).

2. At time of payment, the customer is authenticated by the
cloud (using the credentials entered on the mobile app).
The customer then selects a card to use for payment
from the mobile wallet app.

3. The payment credentials are sent to the customer’s
mobile device to initiate the transaction. The device
transmits the payment credentials to the merchant using
NFC

HCE(Host Based Card Emulation) attacks

27Practical Attacks against digital wallet

•APDU Command sent by read to the card
•Header, 4 bytes
•Class instruction (CLA)
•Code instruction (INS)
•Parameters: P1 and P2
•Optional body (random size)
•Lc = Length of body in bytes
•Le = Length of response to the command (bytes)
•The data field contains data to be sent to the card, to process instructions specified in header

ISO7816

HCE(Host Based Card Emulation) attacks

28Practical Attacks against digital wallet

•Some code instructions (INS) can be accepted by the wallet but not referenced
•Some code instructions (INS) can be proprietary. This could lead to some interesting behavior (however, this
is usually blocked over the contactless interface). You can brute force force and if it’s valid you get a
Conditions of use not satisfied (0x6985) as a status response

•Card agents are (sometime) implementing some checks such as validating for transactions that are not
exceeding a certain amount threshold or valid only at a given merchant name

•Card agent can crash…
•Card agent can leak information disclosure through debugging feature

What can we do?

How to assess a digital wallet

29

•Use physical devices (emulator will not help for SIM Card validation, KYC,
NFC, HCE….) a lot of them

•Create a set of tools based on in memory modifications.
•Log input/output of interesting methods
•Do a data lifetime analysis (how long your credit card number stay in
memory?)

•Use Qark and MobSF to catch low hanging fruits.
•Don’t forget that a component can be compromised at any time. Then it’s
only a matter of risk management.

Practical Attacks against digital wallet

CONCLUSION

Conclusion

31

•Custom Digital Wallet require strong security requirements.
•Thinking that any components can be compromised at any time
•Whatever happened, the data stored or transited through the wallet should be safe
•Time of exposure should be evaluated for each sensitive information
•Card agent is still an attacker vector neglected.
•Custom checks slow down the attacker (like hiding part of the UI with Safetynet checks,
add business logic into security checks)

•With PSD2 coming in Europe in 2018 and globally Open Banking, we will see more custom
Digital Wallet on the Market.

• I will release some of the scripts/tools on https://github.com/Yinkozi

Practical Attacks against digital wallet

https://github.com/Yinkozi

6 - THANKS FOR LISTENING!

QUESTIONS?

References

33

•Security of Mobile Payments and Digital Wallets - ENISA - https://www.enisa.europa.eu/
publications/mobile-payments-security/at_download/fullReport

•Building Secure Containers for Mobile Devices - Ron Gutierrez - http://
2013.appsecusa.org/2013/wp-content/uploads/2013/12/appsec-securecontainers.pptx

• IOS Security - Apple (Update 2017) - https://www.apple.com/business/docs/
iOS_Security_Guide.pdf

•TrustZone TEEs: An attacker Perspective - Gal Benjamin - https://microsoftrnd.co.il/
Press%20Kit/BlueHat%20IL%20Decks/GalBeniamini.pdf

•Mobile Platform Security. Trusted Execution Environments - N. Asokan - http://
asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf

•Hacking Soft Tokens: Advanced Reverse Engineering on Android - Bernhard Mueller
- http://gsec.hitb.org/materials/sg2016/D1%20-%20Bernhard%20Mueller%20-
%20Attacking%20Software%20Tokens.pdf

Practical Attacks against digital wallet

https://www.enisa.europa.eu/publications/mobile-payments-security/at_download/fullReport
https://www.enisa.europa.eu/publications/mobile-payments-security/at_download/fullReport
http://2013.appsecusa.org/2013/wp-content/uploads/2013/12/appsec-securecontainers.pptx
http://2013.appsecusa.org/2013/wp-content/uploads/2013/12/appsec-securecontainers.pptx
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://microsoftrnd.co.il/Press%20Kit/BlueHat%20IL%20Decks/GalBeniamini.pdf
https://microsoftrnd.co.il/Press%20Kit/BlueHat%20IL%20Decks/GalBeniamini.pdf
http://asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf
http://asokan.org/asokan/Padova2014/tutorial-mobileplatsec.pdf
http://gsec.hitb.org/materials/sg2016/D1%20-%20Bernhard%20Mueller%20-%20Attacking%20Software%20Tokens.pdf
http://gsec.hitb.org/materials/sg2016/D1%20-%20Bernhard%20Mueller%20-%20Attacking%20Software%20Tokens.pdf

References

34

• IOS 10: Security and Privacy Changes - Alban Diquet - https://nabla-c0d3.github.io/
documents/ios10_security_changes.pdf

•Pandora's Digital Box: Digital Wallets and the Honor All Wallets Rules - Adam J.
Levitin - https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2819146

•Android Security Analysis: Final report - MITRE - https://www.mitre.org/sites/default/
files/publications/pr-16-0202-android-security-analysis-final-report.pdf

•Qark (Quick Android Review Kit) - Linkedin - https://github.com/linkedin/qark
•MobSF (Mobile Security Framework) - MobSf - https://github.com/MobSF/Mobile-
Security-Framework-MobSF

•Low-level code instrumentation library used by Frida-core - Oleavr - https://
github.com/frida/frida-gum

Practical Attacks against digital wallet

https://nabla-c0d3.github.io/documents/ios10_security_changes.pdf
https://nabla-c0d3.github.io/documents/ios10_security_changes.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2819146
https://www.mitre.org/sites/default/files/publications/pr-16-0202-android-security-analysis-final-report.pdf
https://www.mitre.org/sites/default/files/publications/pr-16-0202-android-security-analysis-final-report.pdf
https://github.com/linkedin/qark
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/frida/frida-gum
https://github.com/frida/frida-gum

