
Cleanly Escaping the
Chrome Sandbox

Tim Becker

whoami
● Tim Becker (@tjbecker_)

● Security Researcher at Theori

● Currently focused on browser exploitation

● From the CTF community (PPP)

Agenda
● Chrome Security Background

● Chrome IPC (Mojo)

● Bug description

● Exploit details

● Takeaways

Chrome Security Model
● Chrome limits most of the web's attack surface to

sandboxed processes
○ DOM rendering, script execution, media decoding, etc.

● Site Isolation keeps data from different origins in
separate processes

● Central “browser” process which runs unsandboxed
● A full Chrome exploit typically requires 2 or more bugs

○ One (or more) to get code execution in a sandboxed process
○ One (or more) to escape the sandbox

Chrome IPC

Mojo
● Primary IPC platform used in Chrome

○ “Legacy” IPC is almost entirely phased out
● Platform-agnostic implementation of most common

IPC primitives
● Specify messages in IDL format
● Code generated for each target language

Mojo Interface Definition
// Mojo service for the getInstalledRelatedApps implementation.
// The browser process implements this service and receives calls from
// renderers to resolve calls to navigator.getInstalledRelatedApps().
interface InstalledAppProvider {
 // Filters |relatedApps|, keeping only those which are both installed on the
 // user's system, and related to the web origin of the requesting page.
 // Also appends the app version to the filtered apps.
 FilterInstalledApps(array<RelatedApplication> related_apps, url.mojom.Url manifest_url)
 => (array<RelatedApplication> installed_apps);
};

C++ bindings Java bindings JS bindings

MojoJS
● Mojo can generate JavaScript bindings
● Blink flag: --enable-blink-features=MojoJS

○ Compromised renderer can enable this by flipping a bit in
memory

● Write sandbox escape exploits in JS!

RenderFrameHost
● Each frame backed by a RenderFrameHost (RFH)
● Many mojo interfaces implemented per-frame

void PopulateFrameBinders(RenderFrameHostImpl* host,
 service_manager::BinderMap* map) {
 ...
 map->Add<blink::mojom::InstalledAppProvider>(
 base::BindRepeating(&RenderFrameHostImpl::CreateInstalledAppProvider,
 base::Unretained(host)));
 ...
}

Bug Details

A Bug’s Life
● Edge is now Chromium-based!
● Windows version of InstalledAppProvider

implemented by Edge team
○ Android version used Java mojo bindings
○ Windows version written in C++

● Landed in Chrome 81 as an experimental feature
○ UAF vuln reachable without flag enabled!

● Vuln coincidentally moved behind flag in Chrome 82
● Reported just before Chrome 81 hit stable

Bug Details
● InstalledAppProviderImpl stores raw pointer to RFH

● RFH can be freed from the renderer
○ e.g. by removing an iframe

● InstalledAppProviderImpl kept alive as long as mojo
connection open

void InstalledAppProviderImpl::FilterInstalledApps(
 std::vector<blink::mojom::RelatedApplicationPtr> related_apps,
 const GURL& manifest_url,
 FilterInstalledAppsCallback callback) {
 if (render_frame_host_->GetProcess()->GetBrowserContext()->IsOffTheRecord()) {
 std::move(callback).Run(std::vector<blink::mojom::RelatedApplicationPtr>());
 return;
 }
 ...
}

Proof of Concept

PoC (Overview)
● Create a new RFH by adding an iframe
● In the subframe, request an InstalledAppProvider
● Free the RFH by deleting the iframe
● Issue: how to keep mojo connection alive from JS?

○ Pass the handle to the parent frame before destroying it!
○ We used MojoInterfaceInterceptor

● Call FilterInstalledApps on the iframe’s handle
○ UAF occurs!

PoC (Code)
// runs in the parent frame
function triggerBug() {
 var frame = allocateRFH();

 // intercept bindInterface calls for this process to accept the handle from the child
 let interceptor = new MojoInterfaceInterceptor("dummy", "process");
 interceptor.oninterfacerequest = function(e) {
 interceptor.stop();

 // bind and return the remote
 var provider_ptr = new blink.mojom.InstalledAppProviderPtr(e.handle);
 freeRFH(frame);
 // trigger the UAF
 p.filterInstalledApps([], new url.mojom.Url({url: window.location.href}));
 }
 interceptor.start();
}

// runs in the child frame
function sendPtr() {
 var pipe = Mojo.createMessagePipe();
 // bind the InstalledAppProvider with the child rfh
 Mojo.bindInterface(blink.mojom.InstalledAppProvider.name,
 pipe.handle1, "context", true);

 // pass the endpoint handle to the parent frame
 Mojo.bindInterface("dummy", pipe.handle0, "process");
}

Exploit Details

Replacing the RFH
● Often useful to control the data of the freed object

● In the browser process, very little allocator hardening

● Easy to allocate controlled data of any size via Blobs

● RFH is a huge object => rarely used heap bucket

○ First blob allocated typically replaces freed RFH

ASLR
● We must control pointers in the RFH object
● With perfect ASLR, we’re out of luck
● Windows ASLR weakness:

○ Multiple instances of same image loaded at same address
● chrome.dll base address same in renderer and browser!
● Assuming compromised renderer, this address is easy to

obtain

Virtual Function "Gadgets"
● Buggy code:

render_frame_host_->GetProcess()->GetBrowserContext()->IsOffTheRecord()

● Virtual function call - we control the vtable pointer!
○ To jump to code, we need a pointer to it at a known address

● All chrome vtables are stored in chrome.dll
○ We can jump to any virtual function!

● How to build stronger primitives?
○ Will need to trigger bug many times

Avoiding a Crash
render_frame_host_->GetProcess()->GetBrowserContext()->IsOffTheRecord()

● GetProcess() result is used for another virtual call
● Solution: redirect GetProcess to:

SomeType* SomeClass::SomeVirtualFunction() {
 return &class_member_;
}

● Returns a pointer some small offset ahead
● Repeat for second virtual call

○ the third is unconstrained!

First vptr

Second vptr

Third vptr

...

...

...

Blob
...

lea rax, qword ptr [rcx + 8]
ret

...

Target function

...

SomeVirtualFunction ptr

...

Target function ptr

...

chrome.dll

Leaking a Heap Address
● Call a virtual function of the form:

SomeClass::SomeMethod() {

 some_member_ = new Foo();

}

● Stores a new allocation into our blob

● Read back the blob data => find heap pointer

One path to sandbox escape
● We now can make pointers to controlled data

● Create arbitrary vptr => can jump to any code!

● One possibility:

○ Jump to stack pivot

○ ROP

● Can we do better?

Disable the Sandbox
● We’re already assuming we can compromise a renderer

○ Renderer unsandboxed => sandbox escape
● --no-sandbox flag propagated to new child processes
● Benefits:

○ Platform independent
○ Easy! Just call this function:

void SetCommandLineFlagsForSandboxType(base::CommandLine* command_line,
 SandboxType sandbox_type) {
 switch (sandbox_type) {
 case SandboxType::kNoSandbox:
 command_line->AppendSwitch(switches::kNoSandbox);
 break;
 ...
 }
}

Arbitrary function call
● We want to call a (nonvirtual) function with controlled

arguments
● Chrome Callback objects store function pointers with

bound arguments
● Call a virtual function which invokes a callback class

member!
○ Control function and arguments

Takeaways
● Edge devs working on new codebase

○ Greater chance for bugs?
○ Some of these will make it back to Chrome, too

● Most browser process bugs exploitable with MojoJS
● ASLR quirks in Windows makes this bug exploitable

○ MacOS/iOS has similar weakness
○ Linux/Android is strongest?

● Disabling the sandbox was cleaner and more adaptable
than code exec

Questions?
More details in blog post: https://theori.io/

https://theori.io/

