
DECODING AND INTERPRETINGDECODING AND INTERPRETING
INTEL PT TRACES FORINTEL PT TRACES FOR

VULNERABILITY ANALYSISVULNERABILITY ANALYSIS
2020

MATT OH, MATT OH, DARUNGRIMDARUNGRIM

1

http://darungrim.com/

WHO AM I?WHO AM I?
Matt Oh

Author of DarunGrim Patch Diffing Tool
Now reviving the project as a

 - work in progress...
Ex Microso� Security Researcher
Now Start-up Starter - focusing on threat detection
and analysis technology

Binary Reverse
Engineering Data Science Kit

2

https://github.com/ohjeongwook/binkit

WHAT IS INTEL PT (PROCESSORWHAT IS INTEL PT (PROCESSOR
TRACE)?TRACE)?

Intel PT (Processor Trace) is a technology that is part of the
recent Intel CPUs. Intel Skylake and later CPU models

comes with this feature.

3

WHAT CAN YOU DO WITH INTEL PT?WHAT CAN YOU DO WITH INTEL PT?
You can trace code execution at instruction level with
triggering and filtering capabilities.

Filtering: CPL, CR3, IP Ranges

Usage

Post-mortem analysis - crashes
Debugging performance isues
Enriching call-stack information
...

4

THIS PRESENTATIONTHIS PRESENTATION
With this presentation, we want to explore the practical
application of this technology in vulnerability analysis.

5

USING INTEL PT ON WINDOWSUSING INTEL PT ON WINDOWS
For recording Intel PT records on Windows mainly three

methods are available.

Name Description
Works for Windows 10 pre-RS6

Windows 10 Post-RS6. Uses ipt.sys interface

Needs physical kernel debugging connection
(ex. USB debugging)

For Linux

WindowsIntelPT

WinIPT

Intel® Debug Extensions for WinDbg* for
Intel® Processor Trace

Cheat sheet for Intel Processor Trace with Linux perf
and gdb

6

https://github.com/intelpt/WindowsIntelPT
https://github.com/ionescu007/winipt
https://software.intel.com/en-us/intel-system-studio-2019-windbg-pt-user-guide-windows-introducing-the-intel-debug-extensions-for-windbg-for-intel-processor-trace
http://halobates.de/blog/p/410

DECODING TRACE: LIBIPTDECODING TRACE: LIBIPT
For analysis of the recorded packets, you can use
from Intel.
Libipt is a standard library that can decode Intel PT
packets. It provides basic tools like ptdump and ptxed.

libipt

7

https://github.com/intel/libipt

INSTRUCTION SOURCESINSTRUCTION SOURCES
Intel PT logs only control flow changes. To decode Intel
PT trace, we need image file where the instructions are
executed.

Because Intel PT doesn't save instruction bytes or
memory contents, you need to provide the
instruction bytes for each IPs (Instruction Pointers).

8

9

MISSING INSTRUCTION SOURCEMISSING INSTRUCTION SOURCE

If we don't have matching image for certain regions of the
code execution, we might lose some execution

information.

JIT code execution: there is no static image file available
Shellcode: the shellcode instructions is not static in
many cases

10

COMPRESSED RECORDINGCOMPRESSED RECORDING
One barrier in utilizing Intel PT in real world is the huge

CPU time requirements to process Intel PT trace file.

The trace file is compressed and it needs to be
decompressed before used for any purposes.
Libipt library can be used for decoding process but it is
more of single threaded operation.

11

BRANCHESBRANCHES

Similar to , Intel PT works by recording branches.
At runtime, when CPU encounters any branch
instructions like "je", "call", "ret", it will record the
actions taken with the branch. With onditional jump
instructions, it will record taken (T) or not taken (NT)
using 1 bit.

LBR

12

https://lwn.net/Articles/680985/

INDIRECT CALLS AND JUMPSINDIRECT CALLS AND JUMPS

With indirect calls and jumps, it will record with target
addresses.

13

UNCONDITIONAL BRANCHESUNCONDITIONAL BRANCHES

For unconditional branches like jumps or calls, it will not
record the change because you can deduce the target

jump address from the instructions.

14

IP COMPRESSIONIP COMPRESSION
The IP (Instruction Pointer) to be recorded will be

compared with last IP recording using one of the FUP, TIP,
TIP.PGE or TIP.PGD packets. If upper parts of the address

bytes overlap between them, those matching bytes will be
suppressed in the current packet. Also, for the near return
instructions, if the return target is the next instruction of

the call instruction, it will not be recorded becaused it can
be deduced from the control flow.

15

PACKETSPACKETS
Descriptions on the packets used in IPT compression can
be found from

.

There are many packets used to implement the recording
mechanism. But, there are few important packet types

that play main roles.

Intel® 64 and IA-32 Architectures So�ware
Developer’s Manual

16

https://software.intel.com/en-us/articles/intel-sdm

PSB (PACKET STREAM BOUNDARY)PSB (PACKET STREAM BOUNDARY)

The PSB packet works as a synchronization point for a
trace-packet decoding. It is the boundary in the trace log

where the decompression process can be performed
indepedently without any side effects. This offset is

referred as "sync offset" in libipt library code because this
is an offset in the trace file where you can safely start

decoding the following packets.

17

TIP (TARGET IP)TIP (TARGET IP)

TIP packets indicate the target IPs. This information can
be used as the base point of instruction pointer.

18

TNT (TAKEN NOT-TAKEN)TNT (TAKEN NOT-TAKEN)

TNT packet is used to indicate whether conditional
branch is taken or not.

Any unconditional branch jumps will not be recorded
because those flow control can be deduced from the
process image.

19

COMPRESSION OVERVIEWCOMPRESSION OVERVIEW
The IntelPT log can be used to reconstruct full instruction

executions and control flow changes with help from
instruction bytes. Without instruction bytes, it only gives

partial view of full instruction executions.

20

EXAMPLE TRACE LOGEXAMPLE TRACE LOG
Here is a snippet of a IPT trace log, which is converted to
text form using ptdump from libipt.

It starts with PSB packet which indictates the position
where you can safely decode following packets.

There are some paddings and timing related packets,
too.

000000000000001c psb

000000000000002c pad

000000000000002d pad

000000000000002e pad

21

TIP.PGETIP.PGE
At offset 3db, there is a tip.pge packet. It means the

instruction pointer is located at the location indicated by
the packet which is 00007ffbb7d63470.

...

00000000000003db tip.pge 3: 00007ffbb7d63470

00000000000003e2 pad

00000000000003e3 pad

22

INSTRUCTIONS FOR TIP.PGE LOCATIONINSTRUCTIONS FOR TIP.PGE LOCATION

From the process image, we can identify the address
00007ffbb7d63470 of tip.pge points to the following

instructions.
seg000:00007FFBB7D63470 mov rcx, [rsp+20h]

seg000:00007FFBB7D63475 mov edx, [rsp+28h]

seg000:00007FFBB7D63479 mov r8d, [rsp+2Ch]

seg000:00007FFBB7D6347E mov rax, gs:60h

seg000:00007FFBB7D63487 mov r9, [rax+58h]

seg000:00007FFBB7D6348B mov rax, [r9+r8*8]

seg000:00007FFBB7D6348F call sub_7FFBB7D63310

23

TIP.PGETIP.PGE
The tip packet indicates that the code started execution

from address 00007ffbb7d63470 and continued execution
until it encounteded call instruction at

00007FFBB7D6348F. Because the call is not indirect one,
the call destination is pre-determined at compile time, so
this tip.pge packet expands to the inside call instructions.

The additional instructions from call target address
00007FFBB7D63310 will be decoded.

seg000:00007FFBB7D63310 sub rsp, 48h

seg000:00007FFBB7D63314 mov [rsp+48h+var_28], rcx

seg000:00007FFBB7D63319 mov [rsp+48h+var_20], rdx

seg000:00007FFBB7D6331E mov [rsp+48h+var_18], r8

seg000:00007FFBB7D63323 mov [rsp+48h+var_10], r9

seg000:00007FFBB7D63328 mov rcx, rax

seg000:00007FFBB7D6332B mov rax, cs:7FFBB7E381E0h

seg000:00007FFBB7D63332 call rax

24

INDIRECT CALLSINDIRECT CALLS
At this point, there is a indirect call happens at address

00007FFBB7D63332. The next tip packet will give the
necessary information where this call is jumping. The
compression removes first 4bytes of address to save

space. From the packet at 3ee, we can deduce that the call
target is 00007ffbb7d4fb70.

...

00000000000003ee tip 2: ????????b7d4fb70

00000000000003f3 pad

...

25

DECODING CONTINUESDECODING CONTINUES
The decoding continues from 00007ffbb7d4fb70 until it

encouters a conditional jump instruction at
00007FFBB7D4FB8C.

seg000:00007FFBB7D4FB70 mov rdx, cs:7FFBB7E38380h

seg000:00007FFBB7D4FB77 mov rax, rcx

seg000:00007FFBB7D4FB7A shr rax, 9

seg000:00007FFBB7D4FB7E mov rdx, [rdx+rax*8]

seg000:00007FFBB7D4FB82 mov rax, rcx

seg000:00007FFBB7D4FB85 shr rax, 3

seg000:00007FFBB7D4FB89 test cl, 0Fh

seg000:00007FFBB7D4FB8C jnz short loc_7FFBB7D4FB95

seg000:00007FFBB7D4FB8E bt rdx, rax

seg000:00007FFBB7D4FB92 jnb short loc_7FFBB7D4FBA0

seg000:00007FFBB7D4FB94 retn

26

TNTTNT
At this point, the tnt packet will give you information

whether the conditional jump is taken or not taken. The
following tnt.8 packet with 2 ".." means, it didn't take two

unconditional jumps.
00000000000003fe tnt.8 ..

27

TNTTNT
Next, it will encounter ret instruction at

00007FFBB7D4FB94.
...

seg000:00007FFBB7D4FB8C jnz short loc_7FFBB7D4FB95

seg000:00007FFBB7D4FB8E bt rdx, rax

seg000:00007FFBB7D4FB92 jnb short loc_7FFBB7D4FBA0

seg000:00007FFBB7D4FB94 retn

28

RETURN ADDRESS RECORDING -> TIPRETURN ADDRESS RECORDING -> TIP
The return address can't be reliably determined from the

image itself even though it can calculate with some
emulation. Basically, "ret" is an indirect jump, where it

retrieves jump address from the current SP (stack pointer).
The next tip packet will give you the address where this ret

instruction is returning.
00000000000003ff tip 2: ????????b7d63334

29

DECODINGDECODING

The returned address disassembles like following and the
code execution continues.

seg000:00007FFBB7D63334 mov rax, rcx

seg000:00007FFBB7D63337 mov rcx, [rsp+48h+var_28]

seg000:00007FFBB7D6333C mov rdx, [rsp+48h+var_20]

seg000:00007FFBB7D63341 mov r8, [rsp+48h+var_18]

seg000:00007FFBB7D63346 mov r9, [rsp+48h+var_10]

seg000:00007FFBB7D6334B add rsp, 48h

30

IPTANALYZER: PROBLEMIPTANALYZER: PROBLEM
STATEMENTSTATEMENT

The IPT compression mechanism is very efficient and it
needs help from disassembly engine to reconstruct full

instructions. Even short amount of IPT trace recording can
take a lot of CPU resources to decompress. One way, you
can apply IP filterings to limit the output to minimize the

amount of trace output. Sometimes huge trace log is
inevitable for research purposes.

31

IPTANALYZERIPTANALYZER
 is a tool to perform parallel processing of the

IPT trace logs. The tool can process Intel PT trace using
Python multiprocessing library and create a basic blocks
cache file. This block information can be useful in overall
analysis of the control flow changes. For example, if you

want to collect instructions from specific image or address
range, you can query this basic block cache file to find the

locations that falls into the range before retrieving full
instructions.

IPTAnalyzer

32

https://github.com/ohjeongwook/iptanalyzer

CASE STUDY: CVE-2017-11882CASE STUDY: CVE-2017-11882
 is a vulnerability in Equation Editor in

Microso� Office. This can be a good exercise target to
exercise how IPT can be used for exploit analysis. We will
explain how you can use IPT and IPTAnalyzer to perform

exploit analysis efficiently.

CVE-2017-11882

33

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-11882

IPT LOG COLLECTIONIPT LOG COLLECTION
You can use various approches to generate IPT trace logs. I

used to generate trace log.WinIPT

34

https://github.com/ionescu007/winipt

OFFICE MALWARE SAMPLEOFFICE MALWARE SAMPLE
We used malicious sample

to reproduce the exploit condition.
abbdd98106284eb83582fa08e3452cf43e22edde9e86ffb8e9386

35

https://www.virustotal.com/gui/file/abbdd98106284eb83582fa08e3452cf43e22edde9e86ffb8e9386c8e97440624/detection

IPTTOOL.EXEIPTTOOL.EXE

Run ipttool.exe with process id and log file name.

36

IPTTOOL.EXEIPTTOOL.EXE
Ex) The process id 2736 is the vulnerable Equation Editor
process. The trace output will be saved into EQNEDT32.pt

file.
C:\Analysis\DebuggingPackage\TargetMachine\WinIPT>ipttool.exe --trace 2736 EQNEDT32.pt

/---\

|=== Windows 10 RS5 1809 IPT Test Tool ===|

|=== Copyright (c) 2018 Alex Ionescu ===|

|=== http://github.com/ionescu007 ===|

|=== http://www.windows-internals.com ===|

\---/

[+] Found active trace with 1476395324 bytes so far

 [+] Trace contains 11 thread headers

 [+] Trace Entry 0 for TID 2520

 Trace Size: 134217728 [Ring Buffer Offset: 4715184]

 Timing Mode: MTC Packets [MTC Frequency: 3, ClockTsc Ratio: 83]

 [+] Trace Entry 1 for TID 1CA8

 Trace Size: 134217728 [Ring Buffer Offset: 95936]

37

TAKING PROCESS MEMORY DUMPTAKING PROCESS MEMORY DUMP
You can use or or even

Windbg to take memory dump of the Equation Editor
(EQNEDT32.exe). Instead of supplying individual image
files to the libipt, IPTAnalyzer can use process memory

dump to retrieve instruction bytes automatically.

ProcDump Process Explorer

38

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

RUNNING IPTANALYZERRUNNING IPTANALYZER
For convenience, set %IPTANALYZERTOOL% as the root of
the IPTAnalyzer folder in the following examples. By using

decode_blocks.py, a block cache file can be generated.
You need to provide -p option with IPT trace file name and

-d option with process memory dump file.
python %IPTANALYZER%\pyipttool\decode_blocks.py -p PT\EQNEDT32.pt -d ProcessMemory\EQNEDT32.dmp -c block.cache

39

PARALLEL PROCESSINGPARALLEL PROCESSING
The following shows the parallel Python processes

working to decode the trace file.

40

DUMP EQNEDT32 MODULE BLOCKSDUMP EQNEDT32 MODULE BLOCKS
Because the EQNEDT32 main module has the vulnerability

and an abnormal code execution pattern will happen
inside or around the module address range, we want to

enumerate blocks inside EQNEDT32 main module range,
which is between 00400000 and 0048e000.

0:011> lmvm EQNEDT32

Browse full module list

start end module name

00000000`00400000 00000000`0048e000 EQNEDT32 (deferred)

...

41

DUMP_BLOCKS.PY: ENUMERATE BASICDUMP_BLOCKS.PY: ENUMERATE BASIC
BLOCKSBLOCKS

The dump_blocks.py tool can be used to enumerate any
basic blocks inside specific address range.

python %IPTANALYZER%\pyipttool\dump_blocks.py -p PT\EQNEDT32.pt -d ProcessMemory\EQNEDT32.dmp -C 0 -c blocks.ca

42

FULL LOG OF BASIC BLOCKS IN ADDRESSFULL LOG OF BASIC BLOCKS IN ADDRESS
RANGERANGE

The command will generate a full log of basic blocks
matching the address range. Probably the transition into

shellcode will happen at the end of the code execution
from the vulnerable module, we focus on the basic block

patterns at the end of the log. Notice the
"sync_offset=2d236c" shows the location of PSB packet
for these last basic block hits. This sync_offset value can

be used to retrieve instructions around that point.

43

FULL LOG OF BASIC BLOCKS IN ADDRESSFULL LOG OF BASIC BLOCKS IN ADDRESS
RANGERANGE

...

> 00000000004117d3 () (sync_offset=2d236c, offset=2d26f4)

 EQNEDT32!EqnFrameWinProc+0x2cf3:

00000000`004117d3 0fbf45c8 movsx eax,word ptr [rbp-38h]

> 000000000041181e () (sync_offset=2d236c, offset=2d26f4)

 EQNEDT32!EqnFrameWinProc+0x2d3e:

00000000`0041181e 0fbf45fc movsx eax,word ptr [rbp-4]

> 0000000000411869 () (sync_offset=2d236c, offset=2d26f4)

 EQNEDT32!EqnFrameWinProc+0x2d89:

00000000`00411869 33c0 xor eax,eax

> 000000000042fad6 () (sync_offset=2d236c, offset=2d26fc)

 EQNEDT32!MFEnumFunc+0x12d9:

44

DUMP EQNEDT32 MODULEDUMP EQNEDT32 MODULE
INSTRUCTIONSINSTRUCTIONS

Now, we know that the last basic blocks from EQNEDT32
module were executed inside "sync_offset=2d236c" PSB
block. The dump_instructions.py script can be used to

dump full instructions. Options like -S (start sync_offset)
and -E (end sync_offset) can be used to specify sync_offset

range.
python %IPTANALYZER%\pyipttool\dump_instructions.py -p ..\PT\EQNEDT32.pt -d ..\ProcessMemory\EQNEDT32.dmp -S 0x

45

LOCATING THE CODE TRANSITIONLOCATING THE CODE TRANSITION
With the output from dump_instructions.py, you can

easily identify where the code transition from EQNEDT32
to shellcode happens.

...

Instruction: EQNEDT32!EqnFrameWinProc+0x2d8b:

00000000`0041186b e900000000 jmp EQNEDT32!EqnFrameWinProc+0x2d90 (00000000`00411870)

Instruction: EQNEDT32!EqnFrameWinProc+0x2d90:

00000000`00411870 5f pop rdi

Instruction: EQNEDT32!EqnFrameWinProc+0x2d91:

00000000`00411871 5e pop rsi

Instruction: EQNEDT32!EqnFrameWinProc+0x2d92:

00000000`00411872 5b pop rbx

Instruction: EQNEDT32!EqnFrameWinProc+0x2d93:

00000000`00411873 c9 leave

Instruction: EQNEDT32!EqnFrameWinProc+0x2d94:

00000000`00411874 c3 ret

Instruction: EQNEDT32!MFEnumFunc+0x12d9:

00000000`0042fad6 c3 ret

46

RET INSTRUCTIONSRET INSTRUCTIONS
From the above instruction listing, you can notice that

there are two "ret" instructions at 00411874 and 0042fad6.
Instruction: EQNEDT32!EqnFrameWinProc+0x2d94:

00000000`00411874 c3 ret

Instruction: EQNEDT32!MFEnumFunc+0x12d9:

00000000`0042fad6 c3 ret

47

CODE CONTROL TRANSFERCODE CONTROL TRANSFER
A�er these two "ret" instructions, the code transfers into a

non-image address space.

Notice that the instruction at 00000000`0019ee9c doesn't
have any matching module name retrieved which means,
it has a high probability of being shellcode loaded inside

dynamic memory.

Instruction: 00000000`0019ee9c bac342baff mov edx,0FFBA42C3h

Instruction: 00000000`0019eea1 f7d2 not edx

Instruction: 00000000`0019eea3 8b0a mov ecx,dword ptr [rdx]

Instruction: 00000000`0019eea5 8b29 mov ebp,dword ptr [rcx]

48

NEXT STAGE SHELLCODENEXT STAGE SHELLCODE
Following the shellcode, we can locate the position where

next stage shellcode is executed at 0019eec1 with "jmp
rax" instruction. Basically, we have full listing of shellcode

execution in the Intel PT log.
Instruction: 00000000`0019eeb7 0567946d03 add eax,36D9467h

Instruction: 00000000`0019eebc 2d7e936d03 sub eax,36D937Eh

Instruction: 00000000`0019eec1 ffe0 jmp rax

49

DUMP_INSTRUCTIONS.PY: DUMPDUMP_INSTRUCTIONS.PY: DUMP
INSTRUCTION IN ADDRESS RANGEINSTRUCTION IN ADDRESS RANGE
These are the next stage shellcode dumped by

dump_instructions.py script.
Instruction: 00000000`00618111 9c pushfq

Instruction: 00000000`00618112 56 push rsi

Instruction: 00000000`00618113 57 push rdi

Instruction: 00000000`00618114 eb07 jmp 00000000`0061811d

Instruction: 00000000`0061811d 9c pushfq

Instruction: 00000000`0061811e 57 push rdi

Instruction: 00000000`0061811f 57 push rdi

Instruction: 00000000`00618120 81ef40460000 sub edi,4640h

Instruction: 00000000`00618126 81ef574b0000 sub edi,4B57h

Instruction: 00000000`0061812c 8dbfbc610000 lea edi,[rdi+61BCh]

Instruction: 00000000`00618132 81c73b080000 add edi,83Bh

Instruction: 00000000`00618138 5f pop rdi

Instruction: 00000000`00618139 5f pop rdi

50

CONCLUSIONSCONCLUSIONS
Intel PT is a very useful technology that can be used for

defensive and offensive security research. IPTAnalyzer is a
tool that uses libipt library to speed up analysis using IPT
trace logs. The exploit example here shows the benefits of
using IPTAnalyzer tool to generate block cache file and use

it for basic exploit investigation. Without help from Intel
PT, this process can be tedious and might rely more on the

instinct of the researchers. With Intel PT, there are
potentials of automating this process and detecting

malicious code activities automatically.

51

