DECODING AND INTERPRETING
INTEL PT TRACES FOR
VULNERABILITY ANALYSIS

2020
MATT OH, DARUNGRIM

http://darungrim.com/

WHO AM |?

e Matt Oh
= Author of DarunGrim Patch Diffing Tool

o Now reviving the project as a Binary Reverse
Engineering Data Science Kit - work in progress...
= Ex Microsoft Security Researcher
= Now Start-up Starter - focusing on threat detection

and analysis technology

https://github.com/ohjeongwook/binkit

WHAT IS INTEL PT (PROCESSOR
TRACE)?

Intel PT (Processor Trace) is a technology that is part of the
recent Intel CPUs. Intel Skylake and later CPU models
comes with this feature.

WHAT CAN YOU DO WITH INTEL PT?

e You can trace code execution atinstruction level with
triggering and filtering capabilities.

= Filtering: CPL, CR3, IP Ranges
e Usage

s Post-mortem analysis - crashes
s Debugging performance isues
» Enriching call-stack information

THIS PRESENTATION

With this presentation, we want to explore the practical
application of this technology in vulnerability analysis.

USING INTEL PT ON WINDOWS

For recording Intel PT records on Windows mainly three
methods are available.

Name Description
WindowslintelPT Works for Windows 10 pre-RS6
WinIPT Windows 10 Post-RS6. Uses ipt.sys interface
Intel® Debug Extensions for WinDbg* for Needs physical kernel debugging connection
Intel® Processor Trace (ex. USB debugging)
e For Linux

» Cheat sheet for Intel Processor Trace with Linux perf
and gdb

https://github.com/intelpt/WindowsIntelPT
https://github.com/ionescu007/winipt
https://software.intel.com/en-us/intel-system-studio-2019-windbg-pt-user-guide-windows-introducing-the-intel-debug-extensions-for-windbg-for-intel-processor-trace
http://halobates.de/blog/p/410

DECODING TRACE: LIBIPT

e For analysis of the recorded packets, you can use libipt
from Intel.

e Libiptis astandard library that can decode Intel PT
packets. It provides basic tools like ptdump and ptxed.

https://github.com/intel/libipt

INSTRUCTION SOURCES

e Intel PT logs only control flow changes. To decode Intel
PT trace, we need image file where the instructions are
executed.
= Because Intel PT doesn't save instruction bytes or

memory contents, you need to provide the
instruction bytes for each IPs (Instruction Pointers).

Executables (PE/ELF)

MISSING INSTRUCTION SOURCE

If we don't have matching image for certain regions of the
code execution, we might lose some execution
information.

e JIT code execution: there is no static image file available
e Shellcode: the shellcode instructions is not static in
many cases

COMPRESSED RECORDING

One barrier in utilizing Intel PT in real world is the huge
CPU time requirements to process Intel PT trace file.

e The trace file is compressed and it needs to be
decompressed before used for any purposes.

e Libiptlibrary can be used for decoding process but it is
more of single threaded operation.

BRANCHES

e Similarto LBR, Intel PT works by recording branches.
= At runtime, when CPU encounters any branch
instructions like "je", "call", "ret", it will record the
actions taken with the branch. With onditional jump
instructions, it will record taken (T) or not taken (NT)

using 1 bit.

https://lwn.net/Articles/680985/

INDIRECT CALLS AND JUMPS

With indirect calls and jumps, it will record with target
addresses.

UNCONDITIONAL BRANCHES

For unconditional branches like jumps or calls, it will not
record the change because you can deduce the target
jump address from the instructions.

|IP COMPRESSION

The IP (Instruction Pointer) to be recordec
compared with last IP recording using one of t

TIP.PGE or TIP.PGD packets. If upper parts of t

will be
ne FUP, TIP,

Ne aC

dress

bytes overlap between them, those matching bytes will be

suppressed in the current packet. Also, for the near return
instructions, if the return target is the next instruction of

the call instruction, it will not be recorded becaused it can

be deduced from the control flow.

PACKETS

Descriptions on the packets used in IPT compression can
be found from Intel® 64 and |A-32 Architectures Software
Developer’s Manual.

There are many packets used to implement the recording
mechanism. But, there are few important packet types
that play main roles.

https://software.intel.com/en-us/articles/intel-sdm

PSB (PACKET STREAM BOUNDARY)

The PSB packet works as a synchronization point for a
trace-packet decoding. It is the boundary in the trace log
where the decompression process can be performed
indepedently without any side effects. This offset is
referred as "sync offset" in libipt library code because this
Is an offset in the trace file where you can safely start
decoding the following packets.

TIP (TARGET IP)

TIP packets indicate the target IPs. This information can
be used as the base point of instruction pointer.

TNT (TAKEN NOT-TAKEN)

e TNT packet is used to indicate whether conditional
branch is taken or not.
= Any unconditional branch jumps will not be recorded
because those flow control can be deduced from the
process image.

COMPRESSION OVERVIEW

The IntelPT log can be used to reconstruct full instruction
executions and control flow changes with help from
instruction bytes. Without instruction bytes, it only gives
partial view of full instruction executions.

TIP.PGE

EXAMPLE TRACE LOG

e Hereis asnippet of a IPT trace log, which is converted to
text form using ptdump from libipt.

000000000000001c psb

000000000000002¢c pad

000000000000002d pad

000000000000002e pad

e |t starts with PSB packet which indictates the position
where you can safely decode following packets.
= There are some paddings and timing related packets,

too.

TIP.PGE

At offset 3db, there is a tip.pge packet. It means the
instruction pointer is located at the location indicated by
the packet which is 00007ffbb7d63470.

00000000000003db tip.pge 3: 00007££fbb7d63470

00000000000003e2 pad

00000000000003e3 pad

INSTRUCTIONS FOR TIP.PGE LOCATION

From the process image, we can identify the address
00007ffbb7d63470 of tip.pge points to the following
Instructions.

seg000:00007FFBB7D63470 o) rcx, [rsp+20h]
seg000:00007FFBB7D63475 o edx, [rsp+28h]
seg000:00007FFBB7D63479 o r8d, [rsp+2Ch]
seg000:00007FFBB7D6347E o rax, gs:60h
seg000:00007FFBB7D63487 o r9, rax+58h]

seg000:00007FFBB7D6348B o rax, [r9+r8+*8]

seg000:00007FFBB7D6348F ca sub_ 7FFBB7D63310

TIP.PGE

The tip packet indicates that the code started execution
from address 00007ffbb7d63470 and continued execution
until it encounteded call instruction at
00007FFBB7D6348F. Because the call is not indirect one,
the call destination is pre-determined at compile time, so
this tip.pge packet expands to the inside call instructions.
The additional instructions from call target address
00007FFBB7D63310 will be decoded.

seg000:00007FFBB7D63310 sub rsp, 48h

seg000:00007FFBB7D63314 mov rsp+48h+var 28], rcx

seg000:00007FFBB7D63319 mov rsp+48h+var 20], rdx

seg000:00007FFBB7D6331E mov rsp+48h+var 18], 8
rspt+48h+var 107,

(
[
(
[

seg000:00007FFBB7D63323 mov r9
seg000:00007FFBB7D63328 mov
seg000:00007FFBB7D6332B mov rax, cs:7FFBB7E381E0h

seg000:00007FFBB7D63332 call

INDIRECT CALLS

At this point, there is a indirect call happens at address
00007FFBB7D63332. The next tip packet will give the
necessary information where this call is jumping. The
compression removes first 4bytes of address to save

space. From the packet at 3ee, we can deduce that the call
target is 00007ftbb7d4fb70.

00000000000003ee tip 2: 2?2?2?2?2227?b7d4£fb70

00000000000003£3 pad

DECODING CONTINUES

The decoding continues from 00007ffbb7d4fb70 until it
encouters a conditional jump instruction at
00007FFBB7D4FBSC.

seg000:00007FFBB7D4FB70 cs:7FFBB7E38380h
seg000:00007FFBB7D4FB77 rcx
seg000:00007FFBB7D4FB7A rax, 9
seg000:00007FFBB7D4FB7E rdx, [rdx+rax*8]
seg000:00007FFBB7D4FB82 rax, rcx
seg000:00007FFBB7D4FB85 rax, 3
seg000:00007FFBB7D4FB89 cl, OFh
seg000:00007FFBB7D4FB8C] short loc 7FFBB7D4FBO95

seg000:00007FFBB7D4FB8E rdx, rax

seg000:00007FFBB7D4FB92] short loc 7FFBB7D4FBAO

seg000:00007FFBB7D4FB94

TNT

At this point, the tnt packet will give you information
whether the conditional jump is taken or not taken. The
following tnt.8 packet with 2 ".." means, it didn't take two
unconditional jumps.

00000000000003fe tnt.8 ..

TNT

Next, it will encounter ret instruction at
00007FFBB7D4FB94.

00007FFBB7D4FB8C jnz short loc 7FFBB7D4FBO95

0O0007FFBB7D4FB8E bt rdx, rax

0O0007FFBB7D4FB92 jnb short loc 7FFBB7D4FBAO

00007FFBB7D4FBR94 retn

RETURN ADDRESS RECORDING -> TIP

The return address can't be reliably determined from the
Image itself even though it can calculate with some
emulation. Basically, "ret" is an indirect jump, where it
retrieves jump address from the current SP (stack pointer).
The next tip packet will give you the address where this ret
Instruction is returning.

DECODING

The returned address disassembles like following and the
code execution continues.

:00007FFBB7D63334
:00007FFBB7D63337 rcx, [rsp+48h+var 28]
:00007FFBB7D6333C dx, [rsp+48h+var 20]

:00007FFBB7D63341 8, [rsp+48ht+var 18]

:00007FFBB7D63346 , [rsp+48h+var 10]

:00007FFBB7D6334B

IPTANALYZER: PROBLEM
STATEMENT

The IPT compression mechanism is very efficient and it
needs help from disassembly engine to reconstruct full
instructions. Even short amount of IPT trace recording can
take a lot of CPU resources to decompress. One way, you
can apply IP filterings to limit the output to minimize the
amount of trace output. Sometimes huge trace log is
inevitable for research purposes.

IPTANALYZER

IPTAnalyzer is a tool to perform parallel processing of the
IPT trace logs. The tool can process Intel PT trace using
Python multiprocessing library and create a basic blocks
cache file. This block information can be useful in overall
analysis of the control flow changes. For example, if you
want to collect instructions from specific image or address
range, you can query this basic block cache file to find the
locations that falls into the range before retrieving full
Instructions.

https://github.com/ohjeongwook/iptanalyzer

CASE STUDY: CVE-2017-11882

CVE-2017-11882 is a vulnerability in Equation Editor in
Microsoft Office. This can be a good exercise target to
exercise how IPT can be used for exploit analysis. We will
explain how you can use IPT and IPTAnalyzer to perform
exploit analysis efficiently.

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-11882

IPT LOG COLLECTION

You can use various approches to generate IPT trace logs. |
used WinIPT to generate trace log.

https://github.com/ionescu007/winipt

OFFICE MALWARE SAMPLE

We used malicious sample
abbdd98106284eb83582fa08e3452cf43e22edde9e86ffh8e938
to reproduce the exploit condition.

https://www.virustotal.com/gui/file/abbdd98106284eb83582fa08e3452cf43e22edde9e86ffb8e9386c8e97440624/detection

IPTTOOL.EXE

Run ipttool.exe with process id and log file name.

IPTTOOL.EXE

Ex) The process id 2736 is the vulnerable Equation Editor
process. The trace output will be saved into EQNEDT32.pt
file.

C:\Analysis\DebuggingPackage\TargetMachine\WinIPT>ipttool.exe --trace 2736 EQNEDT32.pt

| === Windows 10 RS5 1809 IPT Test Tool =

|=== Copyright (c) 2018 Alex Ionescu ===

http://github.com/ionescul07 ===

http://www.windows-internals.com ===|

Found active trace with 1476395324 bytes so far
[+] Trace contains 11 thread headers
[+] Trace Entry 0 for TID 2520
Trace Size: 134217728 [Ring Buffer Offset: 4715184]
Timing Mode: MTC Packets [MTC Frequency: 3, ClockTsc Ratio: 83]
[+] Trace Entry 1 for TID 1CAS8

Trace Size: 134217728 [Ring Buffer Offset: 95936]

TAKING PROCESS MEMORY DUMP

You can use ProcDump or Process Explorer or even
Windbg to take memory dump of the Equation Editor
(EQNEDT32.exe). Instead of supplying individual image
files to the libipt, IPTAnalyzer can use process memory
dump to retrieve instruction bytes automatically.

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

RUNNING IPTANALYZER

For convenience, set %IPTANALYZERTOOL% as the root of
the IPTAnalyzer folder in the following examples. By using
decode_blocks.py, a block cache file can be generated.
You need to provide -p option with IPT trace file name and
-d option with process memory dump file.

™ python.exe
™ python.exe
™ python.exe
™ python.exe
F™ python.exe
F™ python.exe
F™ python.exe
B python.exe
B python.exe
B python.exe
B python.exe
B python.exe
B python.exe
= python.exe
= python.exe
= python.exe
™ python exe
™ python exe
™ python.exe
™ python.exe
™ python.exe
™ python.exe
python.exe

PARALLEL PROCESSING

The following shows the parallel Python processes
working to decode the trace file.

3.04
3.03
292
3.04
3.11
3.11
3.09
312
3.09
3.00
3.06
2.98
312
3.09
3.03
3.11
3.09
3.07
2.90
3.11
3.09
3.10
3.00

1,500,032 K

29 736 K
62,956 K
32416 K
65,616 K
41,120 K
34,104 K
37,596 K
34,120 K
35,364 K
63,288 K
33,660 K
62,980 K
37,404 K
32,564 K
33,020 K
34,204 K
33,664 K
34,764 K
62,956 K
33,020K
35,448 K
34,772 K
61.956 K

1,503,856 K

40,852 K
62,556 K
41568 K
65,176 K
47228 K
41224 K
44284 K
43276 K
45100 K
62,948 K
43104 K
62,256 K
43760 K
42900 K
40,896 K
44,080 K
42 420K
43812K
62,388 K
41,296 K
44,016 K
42396 K
61776 K

1688 Python
26484 Python
23788 Python
13748 Python

4516 Python
22392 Python
23436 Python
19216 Python
20032 Python

360 Python
20668 Python

3160 Python
20836 Python
22568 Python

2040 Python
17764 Python
16820 Python
26436 Python

1580 Python

2344 Python

3024 Python
25584 Python
23420 Python

6480 Python

Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation

python.exe
python.exe
python.exe
python.exe
python.exe
python.exe
python.exe
python.exe
B python.exe

297
2.84
3.06
298
295
3.00
3.07
3.10
312

50,904 K
55,468 K
65,652 K
33,812 K
60,644 K
35,284 K
61932 K
34,440 K
33,936 K

50,440 K
53,012 K
65,172 K
42 612K
59,920 K
44 648 K
61,420 K
44292 K
44 604 K

23328 Python
14128 Python
23752 Python

1480 Python
25960 Python
25536 Python
22804 Python
17360 Python

2488 Python

Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation
Python Software Foundation

DUMP EQNEDT32 MODULE BLOCKS

Because the EQNEDT32 main module has the vulnerability
and an abnormal code execution pattern will happen
inside or around the module address range, we want to
enumerate blocks inside EQNEDT32 main module range,
which is between 00400000 and 0048e000.

DUMP_BLOCKS.PY: ENUMERATE BASIC
BLOCKS

The dump_blocks.py tool can be used to enumerate any
basic blocks inside specific address range.

FULL LOG OF BASIC BLOCKS IN ADDRESS
RANGE

The command will generate a full log of basic blocks
matching the address range. Probably the transition into
shellcode will happen at the end of the code execution
from the vulnerable module, we focus on the basic block
patterns at the end of the log. Notice the
"sync_offset=2d236¢" shows the location of PSB packet
for these last basic block hits. This sync_offset value can
be used to retrieve instructions around that point.

FULL LOG OF BASIC BLOCKS IN ADDRESS
RANGE

> 00000000004117d3 () (sync offset=2d236c, offset=2d26f4)
EQNEDT32!'EgnFrameWinProc+0x2cf3:

00000000°004117d3 0fbf45c8 movsx eax,word ptr [rbp-38h]

> 000000000041181e () (sync_offset=2d236c, offset=2d26f4)
EQNEDT32 !EqnFrameWinProc+0x2d3e:

00000000°0041181e 0fbf45fc movsx eax,word ptr [rbp-4]

> 0000000000411869 () (sync offset=2d236c, offset=2d26f4)
EQNEDT32 !'EgnFrameWinProc+0x2d89:

00000000°00411869 33cO XOor

> 000000000042fad6 () (sync offset=2d236c, offset=2d26fc)

EQNEDT32 !MFEnumFunc+0x12d9:

DUMP EQNEDT32 MODULE
INSTRUCTIONS

Now, we know that the last basic blocks from EQNEDT32
module were executed inside "sync_offset=2d236¢" PSB
block. The dump_instructions.py script can be used to
dump full instructions. Options like -S (start sync_offset)
and -E (end sync_offset) can be used to specify sync_offset
range.

LOCATING THE CODE TRANSITION

With the output from dump_instructions.py, you can
easily identify where the code transition from EQNEDT32
to shellcode happens.

Instruction: EQNEDT32!EgnFrameWinProc+0x2d8b:
00000000°0041186b 900000000 Jmp EQNEDT32 !EgnFrameWinProc+0x2d90 (00000000°00411870)
Instruction: EQNEDT32!EgnFrameWinProc+0x2d90:
00000000°00411870 5f pop rdi

Instruction: EQNEDT32!EgnFrameWinProc+0x2d91:

00000000°00411871 5e pop rsi

Instruction: EQNEDT32!EgnFrameWinProc+0x2d92:
00000000°00411872 5b pop rbx

Instruction: EQNEDT32!EgnFrameWinProc+0x2d93:

00000000°00411873 c9

leave

Instruction: EQNEDT32!EgnFrameWinProc+0x2d94:

00000000°00411874 c3

ret

Instruction: EQNEDT32!MFEnumFunc+0x12d9:

000000007 0042fad6 c3

ret

RET INSTRUCTIONS

From the above instruction listing, you can notice that
there are two "ret" instructions at 00411874 and 0042fadeé.

Instruction: EQNEDT32!EgnFrameWinProc+0x2d9%4:

00000000°00411874 c3 ret
Instruction: EQNEDT32!MFEnumFunc+0x12d9:

000000007 0042fad6 c3 ret

CODE CONTROL TRANSFER

After these two "ret" instructions, the code transfers into a

non-image address space.

00000000°0019%9ee9c bac342baff mov edx, OFFBA42C3h
00000000°0019%eeal f£7d2 not edx

00000000°0019%9eeal3 8bla mov ecx,dword ptr [rdx]

00000000°0019eea5 8b29 mov ebp,dword ptr [rcx]

Notice that the instruction at 00000000 0019ee9c doesn't
have any matching module name retrieved which means,
it has a high probability of being shellcode loaded inside

dynamic memory.

NEXT STAGE SHELLCODE

Following the shellcode, we can locate the position where
next stage shellcode is executed at 0019eecl with "jmp
rax" instruction. Basically, we have full listing of shellcode
execution in the Intel PT log.

' : 00000000°0019eeb7 0567946403 a eax,36D9%467h

ruction: 00000000 0019%eebc 2d7e936d03 su eax, 36D937Eh

ion: 00000000°0019%eecl ffel

DUMP_INSTRUCTIONS.PY: DUMP
INSTRUCTION IN ADDRESS RANGE

These are the next stage shellcode dumped by
dump_instructions.py script.

Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:
Instruction:

Instruction:

00000000°
00000000
00000000°
00000000
00000000
00000000
00000000
00000000°
00000000
00000000
00000000
00000000

00000000

00618111
00618112
00618113
00618114
0061811d
0061811le
0061811f
00618120
00618126
0061812c
00618132
00618138

00618139

9c
57
57
81ef40460000
81ef574b0000
8dbfbc610000
81c73b080000
5f

5f

rsi
rdi

00000000°0061811d

rdi
rdi
edi, 4640h
edi, 4B57h

edi, [rdi+61BCh]

edi, 83Bh

rdi

rdi

CONCLUSIONS

Intel PT is a very useful technology that can be used for
defensive and offensive security research. IPTAnalyzer is a
tool that uses libipt library to speed up analysis using IPT
trace logs. The exploit example here shows the benefits of
using IPTAnalyzer tool to generate block cache file and use

it for basic exploit investigation. Without help from Intel
PT, this process can be tedious and might rely more on the

instinct of the researchers. With Intel PT, there are
potentials of automating this process and detecting
malicious code activities automatically.

