
The Baseband Basics:

Understanding, Debugging and

Attacking the Mediatek Communication

Processor

2

xbase team

Nitay Artenstein
@nitayart

Charles Muiruri
@icrackthecode

Anna Dorfman
@___IgniS

3

In this talk

◈ This is the first public research targeting the Mediatek

baseband platform

◈ Mediatek powers most popular phones in Africa

◈ Disclaimer: Not ready to disclose 0-days yet

◈ We will show a DOS though

4

THE GOAL: A FULLY REMOTE

ATTACK

◈ Fully remote attacks do not involve any interaction on behalf

of the victim

◈ Trigger silently without external indication to the victim

◈ Will lead (possibly as part of an exploit chain) to full device

compromise

5

ATTACKING ANDROID/IOS

Application
Processor

DEP

ASLR

PXN/PAN

6

Data Execution Prevention (DEP)

◈ Prevents certain memory sectors, e.g. the stack, from being

executed.

◈ Hardware-enforced DEP works in conjunction with the NX

(Never eXecute) bit on compatible CPUs.

7

Address Space Layout Randomization

(ASLR)

◈ Randomizes the address space positions of key data areas of

a process, including the base of the executable and the

positions of the stack, heap and libraries

◈ Makes guessing the location of ROP gadgets and APIs very

difficult.

8

ATTACKING ANDROID/IOS

Application
Processor

WiFi Chip Baseband

9

BASEBANDS

iPhone

Samsung Galaxy and Note

Google Nexus

Some LGs and HTCs

10

Popular phones in Africa

Alcatel

Oppo

Tecno

iTel

11

Attacking Basebands: Introduction

CC

SMS

GPRS

12

The Challenges

◈ Closed source, no specs available

◈ Extensive reversing required

◈ No debugging interfaces whatsoever, need to build from

scratch

13

14

Common Attack Vector

◈ Attacking a communication processor (either baseband or

Wi-Fi) allows an attacker to form a bridgehead within a

system

◈ Further escalation is possible and has been done in the past:

either through writing directly to the kernel (Broadcom Wi-Fi)

or exploiting bugs in the RIL (basebands)

15

EMBEDDED BRIDGEHEAD DEVICES

Application
Processor

WiFi Chip Baseband

EBDF: Embedded

Bridgehead Devices

Framework

A little bit history…

◈ Framework was developed for Nitay’s WiFi project

17

◈ Shannon: the same concept was found to be useful for baseband

research

◈ Mediatek: worked after some adaptations

18

The Heart of the Framework: Hooks

19

20

Hooks. General Idea

◈ Intercept function call

◈ Execute our piece of code before any function logic is

executed

◈ Trace \ change function data

21

1
◈ Hooks logic

Finding a target function

22

2

Hooked function

◈ Hooks logic

23

3

Trampoline

◈ Hooks logic

◈ Prepare function arguments for our usage

◈ Jump to our hook main logic

◈ Execute the original instructions that was overwritten

◈ Get back to the normal execution

24

◈ Hooks:

Trampoline

Prepare function arguments

for the hook

Jmp to main hook logic

Original instructions

25

4

Addresses

◈ Hooks logic

26

4

Trampoline After applying
◈ Hooks logic

Jmp to main hook logic

27

5

Hook_info structure

◈ Hooks logic

28

6

Hook main logic

◈ Hooks logic

29

4

Hook main

After applying

◈ Hooks logic

30

Hooks condition

Read \ Write Primitive 🔨

31

Read \ Write Primitive

How? Signature check?

Wifi chip dhdutil No ☺

Shannon

Bug +

ATcommands Yes 

Mediatek Trick No ☺

Mediatek: Achieving

Debugging Abilities

33

Conditions of a debugger

◈ Must have the ability allow reading and writing to memory.

◈ Must have the ability to change memory permissions of

various regions

◈ Must have ability to change code on runtime

34

Modem / AT Commands

◈ Modems use a set of commands that enable them to do

various tasks called Modem/AT commands

◈ AT commands take in a command and respond back to RILD

which logs them to the the radio logs.

◈ Syntax AT+ Command=arguments (...mainly)

35

AT commands

36

AT commands function table

37

38

Hooking the handlers (Strategy)

◈ Read => AT+command=read=size=address

◈ Write => AT+command=write=address=raw bytes

◈ Memory allocation => AT+command=alloc=size

39

40

Changing memory permissions

◈ The goal is to make the whole memory RWX to the

MPU

◈ Make it possible to write code and execute it

◈ AT+command=permission=region start address

41

Architecture

42

43

MAUI Runtime Environment

◈ Mediatek implements "standalone" applications for their

MAUI/Nucleus OS.

◈ Use Kernel Adaptation Layer(KAL) between Real Time

Operating System (RTOS) and upper layer applications

44

KAL API’s

◈ Task management

◈ Task synchronization

◈ Task communication

◈ Timer Management

◈ Memory management

45

46

Task Management

47

ILM_STRUCT

Reverse Engineering

the CC Protocol

49

CC Protocol (Call Control)

50

CC task routing

51

CC task routing

◈ Tasks are chosen depending on the destination

module’s ID

◈ Each task has an array of messages. These are sent

one by one to the relevant message handlers

◈ Some of these messages are under an attacker’s full

control.

52

53

54

Saving BC IE

Exploitation

56

DOS on the baseband

◈ The baseband allocates memory in the control buffer.

◈ Among the bugs we found was a DOS bug which involved

memory allocation via get_ctrl_buffer_ext

◈ When no heap memory is available, get_ctrl_buffer_ext

fails to handle the failure gracefully and crashes the whole

system

◈ Causing large allocations via CC messages reliably

caused a system crash

DEMO

58

Future Steps

◈ Currently working on a potential RCE bug

◈ If successful, will release around end of year

◈ Escalation to application processor: Previous research by

Comsecuris showed this to be possible by exploiting bugs in

the RIL daemon

QUESTIONS?

