O Inside the Octagon

Shout outs

System Guard is the result of many many people’s hard work!

The entire "Octagon” team

The DRTM team across Windows
Enclaves and VBS team

Microsoft Core UEF| team

Intel, AMD, QC teams

Whny attestation’?

__

__

~ All code executes ~ User identities ~ Attacker with

~ with integrity. ~cannot be ~casual physical
5 ? - compromised, ~ access cannot
- spoofed, or stolen. - modify data or

~ code on the device.

 Malicious code Violations of ~ All apps and
~ cannot persistona ~ promises are ~ system
~device. observable. - components have

~ only the privilege
~ they need.

%% Trust Challenges

l

Admin Users
Have
Complete
Control

$6 3 3

Hardware
Diversity ON Security

Creates Configuration Boundaries
Inconsistency

$

Control Plane

Hardware Anchored Trust

Y’S e Edic \mage \ayer T

/i =\ N
< BT B e TNoma

yPe Sele Filter 3 Miew Window Weln

T Opdy WS G ew ek

Untitled -\ @66.1% RGB/]) =«

Intel VT-x and AMD-v

Virtualization extensions allow the HV
launched by the bootloader to create the
page table segmented “Secure kernel”
which is used to isolated code and secrets
from the normal world (VTLO)

Intel TXT and AMD SKINIT

DRTM augments UEFI secure by
decoupling integrity measurements of OS
and HV components from UEFI firmware

- N

6661% T8

-

“ 7 gﬁtchﬁ\emh and W

n ¢ @

UEFI Secure Boot

The UEFI Secure Boot Process ensures
only code signed by the device
manufacturer (platform key) and
Microsoft can run in the boot process

TPM

TPM provides non-exportable keys (e.g.

EK, AIK) and integrity measurement

capabilities.

Secrets such as Bit locker encryption key
- are only unsealed when the expected

code is measured into a PCR

\

Attesting to Trust

Kernel/Boot Drivers/ELAM

Secure Kernel/Hypervisor

WinLoad/HvlLoad

BootMgr

DXE Drivers/UEFI

UEFI Bootloader (db)

Hardware Initialization SEC/PEI

Kernel/Driver Hash Value

SK/HV Hash Value

Win/HvLoad Hash Value

Boot Hash Value
PCR

Unseal Secrets I

Device Health
Windows 10 and later

Device Health
Attestation

See here for additional details

https://docs.microsoft.com/en-us/windows/security/threat-protection/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices

| imitations of current trust model

Secure boot and static root of trust (SRTM)

Strong dependency on the security UEFI firmware
Widespread issues with OEM firmware are used to undermine TCB

igh-integrity attestation is at boot time
DHA only measures and attests to the integrity of system bring up
Simple runtime attacks do not impact health state

imited runtime solutions

FDR/AV can identity runtime attacks limited to integrity (software)
PatchGuard/HyperGuard great but not easily extensible

Platform Protection
Boot

v

UEFI with TPM

v

Secure Boot

Credential Guard

Health Attestation

Building a better moael

What is System Guard Runtime Attestation?

Platform Tamper Detection for Windows
Spanning device boot to ongoing runtime tampering
Designed for remote assessment of device health

Platform-driven approach to benefit a variety of 3
party customers and scenarios

M d=sass7 L7

Why are we building it?

Challenging to build tamper detection schemes
on top of Windows

_everage the VBS security boundary to raise the
Dar on anti-tampering

-volving security approach to keep Windows users and their data safe

1111111
|

How Does it Work?

800t time attestation assures integrity of Windows & environment where
tamper detection sensor runs

Sensor runs in isolated VBS environment constantly monitoring
User/Kernel process space for signs of tampering

Relying par

Relying parties calling into run

ime attestation APIs in normal world get

ntegrity protected attestation

'y backend verities

tamper stat

US

"eports

attestation report to ascertain device

mproving Boot Irust

System Guard with DRTM
Utilize DRTM (Intel, AMD, QC) to measu

re TCB from a Microsoft MLE

"Assume Breach” of UEFI and measure i

DRITM + Remote Attestation

attestation + Azure Conditional Access

SMM Attacks

Can be used to tamper HV and SK post-MLE

- from a hardware-rooted MLE

== Core isolation

Security features available on your device that use virtualization-based
security.

I\/easurements Of key prOpertleS aval‘ab‘e |n PC RS This setting is managed by your administrator.

Memory integrity

AZJEGSJ[“C B cCOM po ne ﬂtS W/ Syste M G VE rd | ntl me Erevents sttaeke Trom saring malieionsesds s i-seety

SSSSSSSSS

Firmware protection

Windows Defender System Guard is protecting your device from
compromised firmware.

SMM paging protections + attestation on roadmap

http://www.uefi.org/sites/default/files/resources/Jiewen Yao - SMM Protection in EDKII_Intel.pdf

System Guard - DRTM

Return
TCE Launch
&

<=
[=
=
=
3
5
=

v

-ACM Signa, LCP

Y
+———All code Imded—L“

Config

+—CPU Config, LCP Branch, ML

ACM

C
C
PCR

Regular Launch

Boot manager (BootMgr) is responsible for initial platform data collection
Parses Secure Boot policy, ACPI/UEFI runtime tables and parts of registry
nitializes BitLocker, displays boot/recovery menu

_aunches Windows loader, resume, or other boot app (such as MemTest)

Windows loader (WinLoad) does the remainder of the data collection

Constructs large structure (loader parameter block) to pass to the kernel
In the case of Hyper-V load, passes data to HvLoader insteac
HvLoader initializes Hyper-V, Secure Kernel (for VSM/VBS), then returns

Entire process executes at VIL O
Secure Boot is the only root chain of trust — TPM used only for BitLocker

Secure Launch = SINIT & ACM

300t manager now chec
f present, TXT heap is a
TxtLoadAcmModule wi

s tor Intel TXT suppo

ocated, GETSEC initialized, MTRRs configured
start the SINIT Authenticated Code Module

t & enablement

Authenticated Code Module provided by Intel for each CPU SKU
Lives In \Windows\System32\acm.bin, or more likely, in TcbRes.wim

WIM contains a V|
Parsed and loadec

ACM validates chi
ful we a

It SINIT is success

pset reqgisters, PCH settings, PCl MM

Otherwise, TXT launch fai

e now in TXT mode and ML

s, and the machine boots Iin

D/PID pair directory and matching ACM (KBL_SINIT)
by TxtLoadAcmFromPackage

O space

- can be loaded
degraded moade

Measured Launch Environment

MLE validates OS-sensitive data structures and execution environment
Specific settings that Hyper-V may be susceptible to, MSR values, etc...

Transterring execution to the MLE
B1ArchLaunchMle copies data into the TRANSIT section of TcbLaunch

TcbLaunch contains the MLE embedded as the "DOS Stub" part of the
PE header (the real PE binary has an e_1fanew PE offset of 12KB+!)

After MLE executior

Calls the first ordinal of TcbLaunch (B1S1EntryPoint) which validates
the input data and parameters of the TcbLaunch Boot Application itself

Fventually calls the application entry point (TcbMain) of the real PE file

TCB Launcnher Flow

TcbLaunch serves as export module containing the Boot Library API

OS boot logic now lives in TcbLoader.d11 which has two exports
TcbLoadEntry used for boot flow, TcbResumeEntry for S5 resume flow

Loading Hyper-V is done by HvLoader.d11, compiled as dynamic library

This factoring allows TcbLoader & HvLoader to share an address space
State, memory and APIs can thus be global to both loaders — as it they

were drivers running within the same kernel

HvLoader factored to handle both TXT vs. non-TXT boot

BlGetExecutionEnvironment used to determine memory ownership
tiple validation stages were added to all pointers and registers in ACP|

Mu
tab

es and al

other ephemeral trar

sfer structures

Virtual Secure Mode

Leverages nested page tables managed by VTL1 to eliminate WAX memory in VTLO kernel-mode

Normal Mode (VTLO) Secure Mode (VTL1)

SLAT Used to Enforce RX-Only

HVCI running in SK validates code pages
If valid, set GPA bits to R=1 W=0 KMX=UMX=1

Isolated Isolated
Process Process
C D

Mode-Based Execute (MBE) Control
T23ASTABCSTTTD Extended-Extended Page Tables (EPT)
/5EB789FE3457BC

873619AB517CD XU for user pages
’ Kernel Code XS for supervisor pages
Integrity Policy :
KMX and UMX become separate hardware bits

Secure Kernel

VSM Enclaves

Extensible development model for VSM
Supports VSM/SGX API documented here
Requires code to be signed by Microsoft

Hardware Resources (CPU, Memory, 1/O)

https://docs.microsoft.com/en-us/windows/desktop/api/enclaveapi/

System Guard Runtime Attestation

Microsoft

Relying Party

C. .~4 7

-.,.- . .-...i
Session
Cert

CCCCCCC h !
/

User

User VTL 1 :
I 7~ ,
] - ‘
' Other Windows |
Signed : Processes
Runtime I System Guard API
Report I

____________________________ R —

System Guard Runtime Broker

__

Kernel

System Guard Agent

Example: Failed Attestation via Data Corruption

VIL VTL-O
Secure Kernel Octagon Agent
/
.
HVCI Policy | .
Kernel Mode M 0 e
7

User Mode

Octagon Engine

Octagon Internals

Activation

Agent Driver Component

SgrmAgent.sys loads early as a boot time driver — must win potential race
against earlier name-squatting driver

Registers Kernel Extension Host to consume internal kernel APl access for
race-free process enumeration and thread CONTEXT acquisition

Creates \Dev1ce\MSSGRMAGENTSYS tied to "SgrmBroker" Service SID:

->Da ->Ace[@]: ->AceType: ACCESS ALLOWED ACE_TYPE
—>Dac
->Dac
->Dac

->Dac

: ->Ace[@]: ->AceFlags: 0xo

: ->Ace[@]: ->AceSize: 0Ox28

: ->Ace[@]: ->Mask : 0x001201bf

: ->Ace[@]: ->SID: S-1-5-80-3706850399-3459138796-2835936764-562029542-397710147 (Well Known Group: NT SERVICE\SgrmBroker)

But — IRP_MJ_CREATE dispatcher only allows handle to be opened by

WinTCB Protected Process (Level 0x62) and restricts to a single owner per
boot

FJFJHJH'H

Activation

Broker Activation

SgrmBroker.exe (“System Guard Runtime Monitor Broker”) loads as
delayed started service, opens handle to Agent, and sends INIT IOCTL
(0x9C402480)

This returns initial kernel image information (kernel base, size, checksum,
timestamp, full path) which will be used to initialize the Assertion Engine

This Engine runs wrapped as a DLL — SgrmEnclave_secure.dll for the
VSM Enclave which can both execute the assertions and perform system
attestation, and SgrmEnclave.dll which is a 'Shim' for assertion-only usage

Finally, registers an RPC Endpoint ("SgrmRpc") to provide Client API

Agent Driver

SgrmAgent provides a "Mailbox" IOCTL (6x9c402484) for requesting:

= User-mode read-only mapping of any piece of kernel-mode VA

= Race-free, referenced access to EPROCESS, ETHREAD, DRIVER OBJECT
= Suspend/resume of any thread

= User-mode copy of any physical RAM, kernel VA, or MMIO region

= Map/unmap of any file

» User-mode memory region bounds and mapped file name, if any

= User-mode CONTEXT of any thread

= Read-only MSR access

= |nternal structure symbol offset lookup by name

Agent Driver

Looked up Symbols

EPROCESS: (User)DirectoryTableBase, Peb, Token, Protection,
SeqguenceNumber, CreateTime, SignaturelLevel, MitigationFlags,
SectionSignaturelLevel, (InheritedFrom)UniqueProcessId, Flags2

TOKEN: TokenSource, Privileges, IntegritylLevellndex,
UserAndGroups, Flags

DRIVER OBJECT: DriverStart/Size/Name/Unload/Startlo,
MajorFunction[], and DEVICE OBJECT's DriverObject

These lookups can provide hints as to what type of data the runtime
attestation engine is looking out for — and possibly ignoring

System Guard Runtime Client AP

Provide an Extensible Mechanism for WDATP & 3rd-party AM

DeviceAttestationSession session = await

COmmunicateS With SYSTEM, Local DeviceAttestationManager.CreateSessionAsync(RPID, Nonce);
Administrator, and WDATP Service SID

String jwtSessionReport = await session.GetSessionReportAsJwtAsync();
Internal RS4 API has a generic "Report”
APl and internal registration for WDATP i etseccioncertitieatensynct):

NeW RSS API provides dedicated String jwtRuntimeReport = await session.GetRuntimeReportAsJwtAsync();
GetSessionReport, GetSessionCertificate

and GetRuntimeReport functions that can be consumed by 3rd party AM
to both validate runtime assertions, as well as that they were generated by
a Secure Launch'ed VSM Enclave (or not!)

Octagon Script Model

Assertions should be rapidly deployable (preferably through Cloud) to react
to real-time threats in the wild, while at the same time provide safety and
security while potentially dangerous/untrusted Ring O data is being parsed

Running Octagon in Ring 3 mitigates the largest privilege escalation
worries, but compiled assertions in a language with pointers and a full

memory access model could still result in theoretical VTLT compromise
through constructed VTL 0 kernel data

Thus, the Assertion Engine is a full-blown LUA Script Interpreter — providing
acceptable performance, good security, and a rapidly iteratable language
commonly used in other AM tools (Windows Defender)

L UA<->Broker Assist Wrapper AP|

How Does LUA Talk to Win32/NT?

When the Assertion Engine is spun up, the EngHostInitialize exportis
called, passing in g BrokerAssistCallbackTbl as an array of “assist” APIs

These are made available through an AssistWrapper class which uses the
Win32 CallEnclave API to exit the enclave and execute the required assist

Most of these assists map 1:1 to the IOCTLs which are provided by the
Agent, but some don't : GetSystemInformation/Time,
NotifyAssertion/LuaFailure, NotifyEngine, SetTimer, TracelLog

These can simply use the regular Win32/TPM API exposed to user mode

Broker<->LUA Host Wrapper AP

How Does the Client APl -> Broker Execute LUA?

The Enclave DLL exports EngHostNotify/DispatchThread/Initialize/

Shutdown for internal use. During initialization, LUA globals can also be set,
such as GLOB KERNEL IMAGE BASE

EngHostGetReport (RS4), EngHostGetRuntimeReport (RS5) call into the
LUA functions (such as "Notify" or "ExecuteNext")

EngHostGetSessionCertificate/Report use VIL1 Enclave API (Enclave
GetAttestationReport) to get VSM-signed proof that the assertions
came from trusted system. EngHostCreate/DestroyAttestationClient
and EngHostAttest talk to relying party to submit the attestation data

Decompiling the LUA Script

ERROR_unknown_upvalue ©[1 © 14] = 1 @ 15

1 © 14 = "EprocessObject HandleProcessCreation”
. . 1 © 15 = function(1l_123 @)
The entlre I—UA Scrlpt -- function num : ©_ 122 , upvalues : ERROR_unknown_upvalue ©
o . (ERROR_unknown_upvalue_©.EPROCESS OBJECT_ENFORCED_ ASSERTIONS):Begin("Creation")
bytecode is in the .luaseg 1ocariizizm
local 1 123 3 = nil

P E Sectio N Of Sg rm E NC 1 ave local 1 123 2 = 1 123 ©:ReadObjectCached()

1 123 1 = (ERROR_unknown_upvalue_©.Symbols):GetMember("EPROCESS Protection")

local 1 123 4 = (ERROR_unknown_upvalue ©.Util):ByteArrayToNumber(1l 123 2, 1 123 1, 1 123 3)
1 123 0@:SaveValue("Protection"”, 1 123 4)

-- DECOMPILER ERROR at PC27: Overwrote pending register: R2 in 'AssignReg’

No modern, well-supported ., . ..

1 123 1 = (ERROR_unknown_upvalue_©.Symbols):GetMember("EPROCESS_SignatureLevel")

. local 1 123 5 = (ERROR_unknown_upvalue ©.Util):ByteArrayToNumber(1l 123 2, 1 123 1, 1 123 3)
LUA 5-3-4+ decompller 1 123 0@:SaveValue("SignaturelLevel”, 1_123_5)\
. -- DECOMPILER ERROR at PC43: Overwrote pending register: R2 in 'AssignReg'’

exists (and MS has used

1 123 1 = (ERROR_unknown_upvalue_©.Symbols):GetMember("EPROCESS_SectionSignaturelLevel")
Custom engine befo re) local 1 123 6 = (ERROR_unknown_upvalue ©.Util):ByteArrayToNumber(l 123 2, 1 123 1, 1 123 3)

1 123 @:SaveValue("SectionSignatureLevel™, 1 123 6)
-- DECOMPILER ERROR at PC59: Overwrote pending register: R2 in 'AssignReg'’

1 123 1 = (ERROR_unknown_upvalue_©.Symbols):GetMember("EPROCESS MitigationFlags")

BUt With SOme haCkS Some local 1 123 7 = (ERROR_unknown_upvalue ©.Util):ByteArrayToNumber(1l 123 2, 1 123 1, 1 123 3)

1 123 0@:SaveValue("MitigationFlags", 1 123 7)

Of the |Og|C Can be exposed EERROR_unknown_upvalue_@.EPROCESS_OBJECT_ENFORCED_ASSERTIONS):End("Cr‘eation")

return ERROR_unknown_upvalue ©.EPROCESS OBJECT_CREATION_COST
end

Decompiling the Cloud-Deployed LUA Script

The LUA script is now deployed by cloud, dropped in \Windows\System32
\Sgrm\SgrmAssertions.bin with a catalog file (SgrmAssertions.cat)
containing its hash and the Isolated User Mode EKU (1.3.6.1.4.1.311.10.3.37)

File Is validated & checked against catalog hash by the enclave, not broker.

It contalns a LUA_FILE_HEADER followed by the LUA Bytecode

CHAR TLVEmpty[6]; // {01, 00, 00, 00, 00, 00}

SHORT Version; // LUA FILE HEADER FORMAT VERSION (1)
INT SVN; /] >= 1

SHORT MajorScriptVersion; // MAJOR _SCRIPT VERSION (1)

RT MinorScriptVersion; // MINOR_SCRIPT_VERSION (1)

RT MajoreEngineVersion; // MAJOR_ENGINE VERSION (1)

RT MinorEngineVersion; // MINOR_ENGINE VERSION (1)

C C C C C C C

S
S_
S

o O O

Current LUA Assertions

Subject to Change & Rapid Iteration

» Process Image Base memory contents & integrity

= Code Integrity for MsSense.exe, MsMpEng.exe & SgrmBroker.exe

= Driver Dispatch Routines for MsSecF1t, SgrmAgent, WdFilter

= Device Objects for HackSysExtremeVulnerableDriver, mimidrv, Htsysm
= EPROCESS Data Modification (Mitigations, Token, Protection Level)

= Primary TOKEN Data Modification (Groups, IL) and SYSTEM Steal/Swap

= Firmware (specifically, SMRAM Unlock on AMD Systems w/ special MSR)

Consider these a useful "tech demo" for the initial implementation as
obviously the checks are nowhere exhaustive yet — the magic behind the
technology 1sn't what hardcoded LUA script runs — it's the engine around it

Current LUA Assertion GUIDs

= FIRMWARE ENFORCEMENT/AUDITMODE GUID
5+d851c7-e688-4887-bt30-13d2c6b6d6C3
b9a781f3-d473-4e10-b871-d32465c4d572
= DRIVEROBJECT DISPATCHES GUID
Pefb8b25-8b47-4993-8a44-69e4b732c105
= BLACKLISTED DEVICES GUID
0817a40a-69b7-4e95-af06-4eef53005660
= PRIMARY_TOKEN ENFORCEMENT/AUDIT_GUID
33b38db6-183a-4709-bfcO-1b917dO3b2bf
12001800-eb82-4abf-868f-ef03acb58fd7 |
= EPROCESS OBJECT_ENFORCEMENT/AUDIT_ GUIDE
e57680b5-3440-47cb-b9dc-49c0ae9dbo73
e8e0e9a8-6238-4331-a4a5-067791f2bdo33
= CODE_INTEGRITY GUID
30dafe52-80ac-4530-a388-6507719e4e5e

Cloud Communications

Broker for HTTP Network Communications

Connecting to an HTTPS server is not only impossible from a Protected
Process, It is also a bad idea

But Session Reports require connecting to sgrm.microsoft.com to send an
HTTP POST request with the attestation (sentto /v1.0/Attestation)

Hence, a custom sandboxed process (SgrmLpac.exe) Is used, which
exposes an RPC interface that is used to connect to the service — It runs as a
Low Privilege App Container (LPAC), having barely any attack surface

Nit: provides an interesting "living off the land" HTTP POST RPC API...

Octagon Threat Model

Fnclave Technologies

Enclave models
Windows supports two enclave types: Intel SGX and Microsoft VSM

ntel SGX
-ully encrypted memory and bus traffic, resilient to SMM (but not ME)
but requires special UEFI enablement, Intel Sky Lake+ SKU, AESM service

Microsoft VSM

Susceptible to runtime SMM attacks and bus snooping/RAM analysis
but runs on any CPU platform with hardware virtualization support

Physical attacker with a quantum laser bit flipper is out of scope
SMM attacks are a realistic attack vector however. What else is there?

Attack Surface

TPM assumed trusted
Reliance on it for reports, attestation, secret sealing through PCRs

Hypervisor assumed trusted
VTLT security and secrets vulnerable to Hyper-V bugs and VSM bugs

SMM assumed trusted

Unmeasured SMM runtime components, privileged SMI handlers, access
outside SMRAM-backed communication buffers can mess with TXT

Management Engine assumed trusted
TXT guarantees and IOMMU boundaries vulnerable to ME vulnerabilities

L iMmitations

Vulnerable to race conditions

Any runtime assertion technology will be limited by an attacker restoring

normal/expected state within the timing window of the assertion (already
an issue with PatchGuard today

Privileged runtime VTL 0 attacker can theoretically supply ‘Take’ data

Measured data for runtime report comes through VTL 0 / Ring 3 broker
orocess and provided by VTL 0 / Ring O driver

DRTM and runtime assertions can only measure/verity ‘known’ unknowns

A magic "God Mode" MSR won't be measured it nobody knows it exists.
Similarly, data-only corruption techniques and effects must be known

Detense-in-Depth

Fast [/O Dispatch with probe & locked MDLs reduces race conditions

Memory-based assertions to detect data attacks are backed by Memory
Descriptor Lists mapped into user mode, simulating a shared data buffer

Ring 3 Broker runs as Windows TCB-level protected process

Self-assertion ar

These checks va

Minimizes risks of user-mode-only admin attacks, requiring either a
orotected process bypass or kernel-driven attack

d validation of Octagon’s own components
idate that Octagon components haven't been

compromised, forcing a successtul bypass to have to win a Time-of-
Check-To-Time-of-Use (TOCTTOU) race

-uture Improvements

Cloud-provisioned scripts with encryption and/or obfuscation

Would create information asymmetry for attackers wishing to fake
assertion (must know every possible assertion — a single one leads to
detection) — this model has proven successtul for PatchGuara

Hypervisor-backed intercepts and guarantees

Gathering data (or enhancing existing data) through hypervisor coulo
reduce reliance on VTL O truth provenance

Improve measurement, signing and attestation guarantees of platform

Vendors continuously innovating with stronger guarantees at firmware
and chipset level

Improving Kernel Security
VBS enabled by default in all Windows SKUs

Needs Ka

Activates Kernel CFG, DMA Protection, etc..

Blocki
HVCI, drivers that are known sources of
Future is to enable more secure signing model (\/\/HQL EV) by default

With

Read

ng malicious, vulnerable, abused drive

-only kernel memory
HyperGuard enforces memory/MSRs as RO
_00king at expanding to protect

oy Lake+ due to pert reasons (MBEC)

S

! TError
(i) Information
Olfm

@I nformation
Q/If orma
@If orma
@k

@Information
I(Dlnformation
<

6/21/2018 5:58:25 PM
6/21/2018 5:52:55 PM
6/21/2018 5:52:55 PM
6/21/2018 5:23:26 PM
6/21/2018 5:23:26 PM
6/21/2018 5:23:26 PM
6/21/2018 5:23:26 PM
6/21/2018 5:23:26 PM
6/21/2018 5:21:03 PM
6/21/2018 5:21:03 PM

Codeln...
Codeln...
Codeln...
Codeln...
Codeln...
Codeln...
Codeln...
Codeln...
Codeln...

3023 (1)
3099 (21)
3085 (20)
3081 (18)
3088 (1)
3089 (1)
3089 (1)
3004 (1)
3099 (21)
3085 (20)

Event 3023, Codelntegrity

General Details

Windows is una fyh gtyfhfl\Dev \HddeIm3\de\Tmp\p143
\p143645yb f e has been revoked. Check with the publisher eifa
new signed ve fhk Imdl Ibl

abuse blocked via blacklist

current attestation points

Improving Boot Security
System Guard with DRTM

Hardware support for DRTM and measured boot available in WIP

OEM support for TXT is coming in future devices

SMM Isolation and Attestation
SMM is a key attack vector tfor TXT and VBS

Working with IHVs to use page table protection
against SMM attacks targeting OS & HV memory

Ability to attest memory protection is available

Farly boot DMA protection

Memory integrity

Prevents attacks from inserting malicious code into high-security

Firmware protection

Windows Defender System Guard is protecting your device from
compromised firmware.

Windows Defender Credential Guard

Credential Guard is protecting your account login from attacks.

—
[}

arn more

Memory access protection

Protects your device's memory from attacks by malicious external devices

Learn more

DMA-r Early boot IOMMU, and BME Clear are all supported in WIP

Wrap up

Windows security promises are increasing

System Guard Runtime Attestation Is critical to providing transparency to users & cloud services

Available now in 1803/1809 with a public attestation APl coming soon

_ Your device is being protected.

Aspirational security promises are the guiding principles for security investments

