
Inside the Octagon
Analyzing System Guard Runtime Attestation

CrowdStrike

Alex Ionescu

Microsoft

David Weston

Microsoft

Octagon Team

Shout outs

Malicious code
cannot persist on a
device.

Violations of
promises are
observable.

All apps and
system
components have
only the privilege
they need.

All code executes
with integrity.

User identities
cannot be
compromised,
spoofed, or stolen.

Attacker with
casual physical
access cannot
modify data or
code on the device.

Admin Users
Have

Complete
Control

Hardware
Diversity
Creates

Inconsistency

Control Plane
OS

Configuration

1

Security
Boundaries

2 3 4 5

Trust Challenges

Hardware Anchored Trust

TPM
TPM provides non-exportable keys (e.g.
EK, AIK) and integrity measurement
capabilities.
Secrets such as Bit locker encryption key
are only unsealed when the expected
code is measured into a PCR

2

UEFI Secure Boot
The UEFI Secure Boot Process ensures
only code signed by the device
manufacturer (platform key) and
Microsoft can run in the boot process

1

Intel TXT and AMD SKINIT
DRTM augments UEFI secure by
decoupling integrity measurements of OS
and HV components from UEFI firmware 3

Intel VT-x and AMD-v
Virtualization extensions allow the HV
launched by the bootloader to create the
page table segmented “Secure kernel”
which is used to isolated code and secrets
from the normal world (VTL0)

4

Attesting to Trust

Hardware Initialization SEC/PEI

UEFI Bootloader (db)

DXE Drivers/UEFI

PK/
KEK

DB

BootMgr

WinLoad/HvLoad

Secure Kernel/Hypervisor

DB

Kernel/Boot Drivers/ELAM

MS

MS

MS

here

https://docs.microsoft.com/en-us/windows/security/threat-protection/protect-high-value-assets-by-controlling-the-health-of-windows-10-based-devices

Limitations of current trust model

Secure boot and static root of trust (SRTM)
Strong dependency on the security UEFI firmware

Widespread issues with OEM firmware are used to undermine TCB

High-integrity attestation is at boot time
DHA only measures and attests to the integrity of system bring up

Simple runtime attacks do not impact health state

Limited runtime solutions
EDR/AV can identify runtime attacks limited to integrity (software)

PatchGuard/HyperGuard great but not easily extensible

What is System Guard Runtime Attestation?

Platform Tamper Detection for Windows

Spanning device boot to ongoing runtime tampering

Designed for remote assessment of device health

Platform-driven approach to benefit a variety of 3rd

party customers and scenarios

Why are we building it?

Challenging to build tamper detection schemes
on top of Windows

Leverage the VBS security boundary to raise the
bar on anti-tampering

Evolving security approach to keep Windows users and their data safe

How Does it Work?

Boot time attestation assures integrity of Windows & environment where
tamper detection sensor runs

Sensor runs in isolated VBS environment constantly monitoring
User/Kernel process space for signs of tampering

Relying parties calling into runtime attestation APIs in normal world get
integrity protected attestation reports

Relying party backend verifies attestation report to ascertain device
tamper status

Improving Boot Trust

System Guard with DRTM

Utilize DRTM (Intel, AMD, QC) to measure TCB from a Microsoft MLE

“Assume Breach” of UEFI and measure it from a hardware-rooted MLE

DRTM + Remote Attestation

Measurements of key properties available in PCRs and TCG logs

Attest TCB components w/ System Guard runtime
attestation + Azure Conditional Access + WDATP

SMM Attacks

Can be used to tamper HV and SK post-MLE

SMM paging protections + attestation on roadmap

http://www.uefi.org/sites/default/files/resources/Jiewen Yao - SMM Protection in EDKII_Intel.pdf

System Guard - DRTM

Regular Launch
Boot manager (BootMgr) is responsible for initial platform data collection

Parses Secure Boot policy, ACPI/UEFI runtime tables and parts of registry

Initializes BitLocker, displays boot/recovery menu

Launches Windows loader, resume, or other boot app (such as MemTest)

Windows loader (WinLoad) does the remainder of the data collection

Constructs large structure (loader parameter block) to pass to the kernel

In the case of Hyper-V load, passes data to HvLoader instead

HvLoader initializes Hyper-V, Secure Kernel (for VSM/VBS), then returns

Entire process executes at VTL 0

Secure Launch – SINIT & ACM
Boot manager now checks for Intel TXT support & enablement

If present, TXT heap is allocated, GETSEC initialized, MTRRs configured

TxtLoadAcmModule will start the SINIT Authenticated Code Module

Authenticated Code Module provided by Intel for each CPU SKU

Lives in \Windows\System32\acm.bin, or more likely, in TcbRes.wim

WIM contains a VID/PID pair directory and matching ACM (KBL_SINIT)

Parsed and loaded by TxtLoadAcmFromPackage

ACM validates chipset registers, PCH settings, PCI MMIO space

Measured Launch Environment
MLE validates OS-sensitive data structures and execution environment

Specific settings that Hyper-V may be susceptible to, MSR values, etc…

Transferring execution to the MLE

BlArchLaunchMle copies data into the TRANSIT section of TcbLaunch

contains the MLE embedded as the "DOS Stub" part of the
PE header (the real PE binary has an e_lfanew PE offset of 12KB+!)

After MLE execution

TCB Launcher Flow
TcbLaunch serves as export module containing the Boot Library API

OS boot logic now lives in TcbLoader.dll which has two exports
TcbLoadEntry used for boot flow, TcbResumeEntry for S5 resume flow

Loading Hyper-V is done by HvLoader.dll, compiled as dynamic library

This factoring allows TcbLoader & HvLoader to share an address space
State, memory and APIs can thus be global to both loaders – as if they
were drivers running within the same kernel

HvLoader factored to handle both TXT vs. non-TXT boot

BlGetExecutionEnvironment used to determine memory ownership
Multiple validation stages were added to all pointers and registers in ACPI
tables and all other ephemeral transfer structures

Kernel Pool

User

Mode

Kernel

Mode

Secure Mode (VTL1)Normal Mode (VTL0)

Virtual Secure Mode

NT Kernel Secure Kernel

Mode-Based Execute (MBE) Control
Extended-Extended Page Tables (EPT)
XU for user pages

XS for supervisor pages

KMX and UMX become separate hardware bits

SLAT Used to Enforce RX-Only
HVCI running in SK validates code pages
If valid, set GPA bits to R=1 W=0 KMX=UMX=1

VSM Enclaves
Extensible development model for VSM
Supports VSM/SGX API documented here

Requires code to be signed by Microsoft

https://docs.microsoft.com/en-us/windows/desktop/api/enclaveapi/

System Guard Runtime Attestation
Microsoft

Relying Party

Clients

System Guard

Attestation

Service

Relying Party

Clients

System Guard API

Client

System Guard Runtime Broker

System Guard Agent

System Guard Sensor

VTL 0

Relying Party

Kernel Kernel

UserUser VTL 1

Signed

Runtime

Report

Session

Cert

Admin

Example: Failed Attestation via Data Corruption

EPROCESS

Driver Dispatch

Process Mitigations

VBOX

Capcom

CPU-Z

Attacker Process

Activation

Activation

, opens handle to Agent, and sends INIT IOCTL
(0x9C402480)

This returns initial kernel image information (kernel base, size, checksum,

timestamp, full path) which will be used to initialize the Assertion Engine

Agent Driver

SgrmAgent provides a "Mailbox" IOCTL (0x9c402484) for requesting:

 User-mode read-only mapping of any piece of kernel-mode VA

 Race-free, referenced access to EPROCESS, ETHREAD, DRIVER_OBJECT
 Suspend/resume of any thread

 User-mode copy of any physical RAM, kernel VA, or MMIO region

 Map/unmap of any file

 User-mode memory region bounds and mapped file name, if any

 User-mode CONTEXT of any thread

 Read-only MSR access

 Internal structure symbol offset lookup by name

Agent Driver

– and possibly ignoring

System Guard Runtime Client API

with SYSTEM, Local

Administrator, and WDATP Service SID

Internal RS4 API has a generic "Report"

API and internal registration for WDATP

//Application requests an attestation session from System Guard
DeviceAttestationSession session = await
DeviceAttestationManager.CreateSessionAsync(RPID, Nonce);

//Application obtains session report signed by System Guard
Attestation Service
String jwtSessionReport = await session.GetSessionReportAsJwtAsync();

//Application can request the session X.509 certificate to verify the
session report
//and obtain the key to validate the runtime report signature
Certificate sessionCertificate = await
session.GetSessionCertificateAsync();

//Application obtains runtime report signed by System Guard (called
multiple times per session)
String jwtRuntimeReport = await session.GetRuntimeReportAsJwtAsync();

Octagon Script Model

LUA<->Broker Assist Wrapper API
Does LUA Talk to Win32/NT?

the Assertion Engine is spun up, the EngHostInitialize export is

called, passing in g_BrokerAssistCallbackTbl as an array of “assist” APIs

These are made available through an AssistWrapper class which uses the

Win32 CallEnclave API to exit the enclave and execute the required assist

Most of these assists map 1:1 to the IOCTLs which are provided by the

Agent, but some don't : GetSystemInformation/Time,
NotifyAssertion/LuaFailure, NotifyEngine, SetTimer, TraceLog

These can simply use the regular Win32/TPM API exposed to user mode

Broker<->LUA Host Wrapper API

The Enclave DLL exports EngHostNotify/DispatchThread/Initialize/
Shutdown for internal use. During initialization, LUA globals can also be set,

such as GLOB_KERNEL_IMAGE_BASE

EngHostGetReport (RS4), EngHostGetRuntimeReport (RS5) call into the

LUA functions (such as "Notify" or "ExecuteNext")

EngHostGetSessionCertificate/Report use VTL1 Enclave API (Enclave
GetAttestationReport) to get VSM-signed proof that the assertions

came from trusted system. EngHostCreate/DestroyAttestationClient
and EngHostAttest talk to relying party to submit the attestation data

Decompiling the LUA Script

The entire LUA script

bytecode is in the .luaseg
PE section of SgrmEnclave

No modern, well-supported

LUA 5.3.4+ decompiler

exists (and MS has used

custom engine before)

But with some hacks... some

of the logic can be exposed

Decompiling the Cloud-Deployed LUA Script

The LUA script is now deployed by cloud, dropped in \Windows\System32
\Sgrm\SgrmAssertions.bin with a catalog file (SgrmAssertions.cat)

containing its hash and the Isolated User Mode EKU (1.3.6.1.4.1.311.10.3.37)

File is validated & checked against catalog hash by the enclave, not broker.

It contains a LUA_FILE_HEADER followed by the LUA Bytecode
 UCHAR TLVEmpty[6]; // {01, 00, 00, 00, 00, 00}
 USHORT Version; // LUA_FILE_HEADER_FORMAT_VERSION (1)
 UINT SVN; // >= 1
 USHORT MajorScriptVersion; // MAJOR_SCRIPT_VERSION (1)
 USHORT MinorScriptVersion; // MINOR_SCRIPT_VERSION (1)
 USHORT MajorEngineVersion; // MAJOR_ENGINE_VERSION (1)
 USHORT MinorEngineVersion; // MINOR_ENGINE_VERSION (1)

Current LUA Assertions
to Change & Rapid Iteration

 Process Image Base memory contents & integrity

 Code Integrity for MsSense.exe, MsMpEng.exe & SgrmBroker.exe
 Driver Dispatch Routines for MsSecFlt, SgrmAgent, WdFilter
 Device Objects for HackSysExtremeVulnerableDriver, mimidrv, Htsysm
 EPROCESS Data Modification (Mitigations, Token, Protection Level)

 Primary TOKEN Data Modification (Groups, IL) and SYSTEM Steal/Swap

 Firmware (specifically, SMRAM Unlock on AMD Systems w/ special MSR)

Consider these a useful "tech demo" for the initial implementation as

obviously the checks are nowhere exhaustive yet – the magic behind the

technology isn't what hardcoded LUA script runs – it's the engine around it

 FIRMWARE_ENFORCEMENT/AUDITMODE_GUID
5fd851c7-e688-4887-bf30-13d2c6b6d6c3
b9a781f3-d473-4e10-b871-d32465c4d572

 DRIVEROBJECT_DISPATCHES_GUID
0efb8b25-8b47-4993-8a44-69e4b732c105

 BLACKLISTED_DEVICES_GUID
9817a40a-69b7-4e95-af06-4eef53005660

 PRIMARY_TOKEN_ENFORCEMENT/AUDIT_GUID
33b38db6-f83a-4709-bfc0-1b917d03b2bf
1200f800-eb82-4abf-868f-ef03acb58fd7

 EPROCESS_OBJECT_ENFORCEMENT/AUDIT_GUID
e57680b5-3440-47cb-b9dc-49c0ae9db073
e8e0e9a8-6238-4331-a4a5-06779f2bd033

 CODE_INTEGRITY_GUID
30dafe52-80ac-4530-a388-6507719e4e5e

Current LUA Assertion GUIDs

Cloud Communications

Connecting to an HTTPS server is not only impossible from a Protected

Process, it is also a bad idea

But Session Reports require connecting to sgrm.microsoft.com to send an

HTTP POST request with the attestation (sent to /v1.0/Attestation)

Hence, a custom sandboxed process (SgrmLpac.exe) is used, which

exposes an RPC interface that is used to connect to the service – it runs as a

Low Privilege App Container (LPAC), having barely any attack surface

Nit: provides an interesting "living off the land" HTTP POST RPC API...

Enclave Technologies
Enclave models
Windows supports two enclave types: Intel SGX and Microsoft VSM

Intel SGX

Fully encrypted memory and bus traffic, resilient to SMM (but not ME)
but requires special UEFI enablement, Intel Sky Lake+ SKU, AESM service

Microsoft VSM

Physical attacker with a quantum laser bit flipper is out of scope

Attack Surface
TPM assumed trusted

Reliance on it for reports, attestation, secret sealing through PCRs

Hypervisor assumed trusted

VTL1 security and secrets vulnerable to Hyper-V bugs and VSM bugs

SMM assumed trusted

Management Engine assumed trusted

Limitations
Vulnerable to race conditions

Any runtime assertion technology will be limited by an attacker restoring
normal/expected state within the timing window of the assertion (already
an issue with PatchGuard today

Privileged runtime VTL 0 attacker can theoretically supply ‘fake’ data

Measured data for runtime report comes through VTL 0 / Ring 3 broker
process and provided by VTL 0 / Ring 0 driver

DRTM and runtime assertions can only measure/verify ‘known’ unknowns

A magic "God Mode" MSR won't be measured if nobody knows it exists.
Similarly, data-only corruption techniques and effects must be known

Defense-in-Depth
Fast I/O Dispatch with probe & locked MDLs reduces race conditions

Memory-based assertions to detect data attacks are backed by Memory
Descriptor Lists mapped into user mode, simulating a shared data buffer

Ring 3 Broker runs as Windows TCB-level protected process

Minimizes risks of user-mode-only admin attacks, requiring either a
protected process bypass or kernel-driven attack

Self-assertion and validation of Octagon’s own components

These checks validate that Octagon components haven't been
compromised, forcing a successful bypass to have to win a Time-of-
Check-To-Time-of-Use (TOCTTOU) race

Future Improvements
Cloud-provisioned scripts with encryption and/or obfuscation

Would create information asymmetry for attackers wishing to fake
assertion (must know every possible assertion – a single one leads to
detection) – this model has proven successful for PatchGuard

Hypervisor-backed intercepts and guarantees

Gathering data (or enhancing existing data) through hypervisor could
reduce reliance on VTL 0 truth provenance

Improve measurement, signing and attestation guarantees of platform

Vendors continuously innovating with stronger guarantees at firmware
and chipset level

Improving Kernel Security

VBS enabled by default in all Windows SKUs

Activates Kernel CFG, DMA Protection, etc..

Blocking malicious, vulnerable, abused drivers

With HVCI, drivers that are known sources of abuse blocked via blacklist

Future is to enable more secure signing model (WHQL, EV) by default

Read-only kernel memory

HyperGuard enforces memory/MSRs as RO

Looking at expanding to protect current attestation points

Improving Boot Security

System Guard with DRTM

OEM support for TXT is coming in future devices

SMM Isolation and Attestation

SMM is a key attack vector for TXT and VBS

Working with IHVs to use page table protection
against SMM attacks targeting OS & HV memory

Ability to attest memory protection is available

Early boot DMA protection

DMA-r, Early boot IOMMU, and BME Clear are all supported in WIP

Windows security promises are increasing

Aspirational security promises are the guiding principles for security investments

System Guard Runtime Attestation is critical to providing transparency to users & cloud services

Available now in 1803/1809 with a public attestation API coming soon

