
UlfFrisk

Practical Uses for
Memory Visualization

Agenda

Introduction and background

What is PCILeech and The Memory Process File System?

Finding a ”Total Meltdown”

Hardware assisted Cheating in games

In-Depth: Capabilities Design, API and Plugins

Demos - Live Demos!

Pentester by day – Stockholm, Sweden

Security Researcher by night

Author of the PCILeech Direct Memory Acccess Attack Toolkit

Presented at DEF CON and the Chaos Communication Congress

100% Open Source

About Me: Ulf Frisk

What is the Memory Process File System?

Memory Analysis tool with Windows focus

In-Memory objects as Files and Folders

C and Python API

Multi-threading + native C core + intelligent parsing → FAST!

Wide range of memory acquisition methods:

hardware and software

Demo: 32 gigs in a second ...

DumpIt created Memory Crash Dump

Point and click analysis

Analysis with HW device

Target Computer

FPGA

Analysis Computer

USB3

PCIe
(ExpressCard)

Use Case #1 – Finding a Total Meltdown

CVE-2018-1038 - local privilege escalation user to kernel

Arbitrary physical memory read/write at GB/s.

Windows 7 / 2008R2 only

Introduced in Meltdown patches

Patched in March 2018

Contacted the MSRC and published blog entry with PoC

But it wasn’t fixed …

Finding a Total Meltdown

… and I’ve released a trivially exploitable kernel 0-day

Fixed if running with administrative privileges

NOT fixed if running as normal user

Super fast fix from Microsoft with OOB patch on March 29th

only two days after my blog post

Demo: Finding a Total Meltdown

Locate Total Meltdown by looking at the memory map!

PML4 self referential entry mapped as user-mode

”Total Meltdown” – 1 bit set in error

000000008de80867  Entry: PML4e

(hex) 0x7 = 0111 (binary)

The minimal ”exploit”

No API calls required! – just read and write already in-process memory!

Check for existence:
unsigned long long pte_selfref = *(unsigned long long*)0xFFFFF6FB7DBEDF68;

Read 4k ”arbitrary” physical memory from address 0x331000
unsigned char buf[0x1000];

// ”randomly” hi-jack pte# 0x100 (offset 0x800), let’s hope it’s not used :)

(unsigned long long)0xFFFFF6FB7DBED800 = 0x0000000000331867;

// 0xFFFFF6FB7DB00000 == (0xffff << 48) + (0x1ed << 39) + (0x1ed << 30) + (0x1ed << 21) + (0x100 << 12)

memcpy(buf, 0xFFFFF6FB7DB00000, 0x1000);

The unexpected use case – cheating in games!

Anti-Cheats – detects software based cheats

HW Cheat – ”only” a PCIe device ...

Memory analysis on separate computer

Read-Only ”radar / map decloak”
or Read-Write (more easily detected)

Use Case #2 – Hardware Cheats

Hardware Cheats

Cheating scandal summer 2018

Cheating at home and on LANs
when OK to bring own computer

Cheat focused fork on Github

Hardware Cheats

Hardware Cheats

“prices for these cheats have been seen in the $1,500 to $5,000 range”

“ … can detect hardware-based cheats even when
disguising the hardware cheat as a legitimate device. ”

“ … ban wave of both cheat customers and developers ...”

http://thunderclap.io/thunderclap-paper-ndss2019.pdf

What if ... it’s possible to perfectly emulate legit hardware devices?

Already demonstrated by Cambridge University – Thunderclap

$4500+ platform

MemProcFS Design Goals

Ease of use – but yet powerful

Modular design and plugin functionality

APIs – C and Python

Performance

File System callbacks

(very little code)

MemProcFS.exe

C API

Memory Analysis
Virtual to Physical Memory translation

Memory Models (x86, PAE, x64)

vmm.dll

C API

Physical Memory Read/Write

Physical Memory Map

Device Support

leechcore.dll

Files

Loaded Driver

HW-Device

Python API

(wrapper around C API)

vmmpyc.pyd

Read Mem
Write Mem

List Directory
Read File
Write File

Plugins

C and Python Remote

Modular Design – Component Overview

C API

Physical Memory Read/Write

Physical Memory Map

Device Support

leechcore.dll

USB3380

FPGA

Raw memory dump

Driver (winpmem)

Full crash dump (DumpIt)

Hyper-V save fileRemote LeechAgent (RPC)

HP iLO

Comae DumpIt

LeechCore Library

Focus:
Physical Memory Read/Write

Separates memory
acquisition from analysis kerberos secured

mutual-auth

Vmm Library

“Housekeeper”
Thread

object manager - refcount

Cache:
Physical Memory

Cache:
Page Tables

Virtual2Physical:
Memory Models – x64, PAE, x86

API

Process

MemMap ModMap

Analysis Plugin Mgr

C API

Physical Memory Read/Write

Physical Memory Map

Device Support

leechcore.dll

Files

Loaded Driver

Remote

File System callbacks

(very little code)

MemProcFS.exe

Plugins

Incident Response with LeechAgent

Suspicious process → Computer Quarantined to VLAN

Limited bandwidth high latency network

Full memory dump == slow

Solution: Retrieve only the memory needed →
Analyze with The Memory Process File System

Or even better … run the analysis on the
remote computer by submitting a Python script!

Demo: Remote Malware Memory Analysis

Analyze live malware memory

From remote infected system

By clicking on files!

Incident Response

Advantages with Physical Memory Analysis

MemProcFS has OK performance even over laggy networks
LeechAgent remote analysis directly on endpoint is nice (avoids latency)

Future focus: Performance optimizations
→ parallelize even more → reduce latency impact
→multi-threaded design is awesome → background refreshes

Limited analysis functionality right now
→more analysis plugins planned!

Demo: Python “All Things RWX”

Analyze live memory …

From remote system

… in Python by using API

Locate rwx memory processes

Demo: Python “All Things RWX”

Analyze live memory

On remote system → No latency / bandwidth limitations ☺

… in Python by using API

Locate rwx memory processes

Python API

Read / Write Physical and Virtual Memory

Process information

Modules information

List / Read / Write MemProcFS “files”

Focus: Performance

Multi-Threading

In-memory caching

Intelligent parsing

Avoid scanning (if possible)

Locate Kernel DTB and Kernel Base

Locate Kernel DTB / PML4

DTB aka PML4 is required to translate Virtual address to Physical address

1. Known to “device” – Crash Dump files, DumpIt, …

2. Does “Low Stub” exist?

3. Scan for DTB in lower memory.

PML4

ntoskrnl address
(not base)

Demo: Write to Memory

Hunt for data in Process Heap

Overwrite data in memory

… a work in progress – future work

Page Hashing

Functionality and Features

Additional analysis capabilities

- Registry and Threads

Support non-Windows OS

Additional memory acquisition methods

signature matching
remote:
- background low-bandwith

cache coherency updates
- lower bandwith memory

acquisition

Summary – The Memory Process File System

Easy point-and-click file-based Memory Analysis tool

API for Python/C/C++

Wide range of memory acquisition methods – also remote Agent

Open Source

UlfFrisk

Thank You!

github.com/ufrisk/MemProcFS

