
SKORPIO: Advanced Binary Instrumentation Framework

NGUYEN Anh Quynh <aquynh -at- gmail.com>

OPCDE Dubai, April 7th, 2018

1 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

About me

Nguyen Anh Quynh, aquynh -at- gmail.com
I Nanyang Technological University, Singapore
I PhD in Computer Science
I Operating System, Virtual Machine, Binary analysis, etc
I Usenix, ACM, IEEE, LNCS, etc
I Blackhat USA/EU/Asia, DEFCON, Recon, HackInTheBox, Syscan, etc
I Capstone disassembler: http://capstone-engine.org
I Unicorn emulator: http://unicorn-engine.org
I Keystone assembler: http://keystone-engine.org

2 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

http://capstone-engine.org
http://unicorn-engine.org
http://keystone-engine.org

Agenda

1 Dynamic Binary Instrumentation (DBI)

2 Skorpio instrumentation engine

3 Demos

4 Conclusions

3 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Dynamic Binary Instrumentation (DBI)

Definition
A method of analyzing a binary application at runtime through
injection of instrumentation code.

I Extra code executed as a part of original instruction stream
I No change to the original behavior

Framework to build apps on top of it

Applications
Code tracing/logging
Debugging
Profiling
Security enhancement/mitigation

4 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

DBI illustration

5 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

DBI techniques

Just-in-Time translation
I Transparently translate & execute code at runtime

F Perform on IR: Valgrind
F Perform directly on native code: DynamoRio

I Better control on code executed
I Heavy, super complicated in design & implementation

Hooking
I Lightweight, much simpler to design & implement
I Less control on code executed & need to know in advance where to

instrument

6 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Hooking mechanisms - Inline

Inline code injection
I Put instrumented code inline with original code
I Can instrument anywhere & unlimited in extra code injected
I Require complicated code rewrite

7 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Hooking mechanisms - Detour
Detour injection

I Branch to external instrumentation code
F User-defined CALLBACK as instrumented code
F TRAMPOLINE memory as a step-stone buffer

I Limited on where to hook
F Basic block too small?

I Easier to design & implement

8 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Detour injection mechanisms
Branch from original instruction to instrumented code
Branch to trampoline, or directly to callback

I Jump-trampoline technique
I Jump-callback technique
I Call-trampoline technique
I Call-callback technique

9 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Jump-trampoline technique

10 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Jump-callback technique

11 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Call-trampoline technique

12 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Call-callback technique

13 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Problems of existing DBI

Limited on platform support
Limited on architecture support
Limited on instrumentation techniques
Limited on optimization

14 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

SKORPIO framework

Open source, with permissive license
Low level framework to build applications on top

I App typically designed as dynamic libraries (DLL/SO/DYLIB)
Cross-platform-architecture

I Windows, MacOS, Linux, BSD, etc
I X86, Arm, Arm64, Mips, Sparc, PowerPC

Allow all kind of instrumentations
I Arbitrary address, in any privilege level

Designed to be easy to use, but support all kind of optimization
I Super fast (100x) compared to other frameworks, with proper setup

Support static instrumentation, too!

15 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

SKORPIO architecture

16 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross platform - Memory

Thin layer to abstract away platform details
Different OS supported in separate plugin

I Posix vs Windows
Trampoline buffer

I Allocate memory: malloc() vs VirtualAlloc()
I Memory privilege RWX: mprotect() vs VirtualAlloc()
I Trampoline buffer as close as possible to code to reduce branch

distance
Patch code in memory

I Unprotect -> Patch -> Re-protect
I mprotect() vs VirtualProtect()

17 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Save/Restore context

Save memory/registers modified by initial branch & callback
Keep the code size as small as possible
Depend on architecture + mode

I X86-32: PUSHAD; PUSHFD & POPFD; POPAD
I X86-64 & other CPUs: no simple instruction to save all registers :-(

F Calling convention: cdecl, optlink, pascal, stdcall, fastcall, safecall,
thiscall, vectorcall, Borland, Watcom

F SystemV ABI vs Windows ABI

Special API to customize code to save/restore context

18 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Callback argument

Pass user argument to user-defined callback
Depend on architecture + mode & calling convention

I SysV/Windows x86-32 vs x86-64
F Windows: cdecl, optlink, pascal, stdcall, fastcall, safecall, thiscall,

vectorcall, Borland, Watcom
I X86-64: "mov rcx, <value>" or "mov rdi, <value>. Encoding

depends on data value
I Arm: "ldr r0, [pc, 0]; b .+8; <4-byte-value>"
I Arm64: "movz x0, <lo16>; movk x0, <hi16>, lsl 16"
I Mips: "li $a0, <value>"
I PPC: "lis %r3, <hi16>; ori %r3, %r3, <lo16>"

19 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Branch distance

Distance from hooking place to callback cause nightmare :-(
I Some architectures have no explicit support for far branching

F X86-64 JUMP: "push <addr>; ret" or "push 0; mov dword ptr
[rsp+4], <addr>" or "jmp [rip]"

F X86-64 CALL: "push <next-addr>; push <target>; ret"
F Arm JUMP: "b <addr>" or "ldr pc, [pc, #-4]"
F Arm CALL: "bl <addr>" or "add lr, pc, #4; ldr pc, [pc, #-4]"
F Arm64 JUMP: "b <addr>" or "ldr x16, .+8; br x16"
F Arm64 CALL: "bl <addr>" or "ldr x16, .+12; blr x16; b .+12"
F Mips JUMP: "li $t0, <addr>; jr $t0"
F Mips CALL: "li $t0, <addr>; move $t9, $t0; jalr $t0"
F Sparc JUMP: "set <addr>, %l4; jmp %l4; nop"
F Sparc CALL: "set <addr>, %l4; call %l4; nop"

20 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Branch for PPC
PPC has no far jump instruction :-(

I copy LR to r23, save target address to r24, then copy to LR for BLR
I restore LR from r23 after jumping back from trampoline
I "mflr %r23; lis %r24, <hi16>; ori %r24, %r24, <lo16>; mtlr %r24;

blr"
PPC has no far call instruction :-(

I save r24 with target address, then copy r24 to LR
I point r24 to instruction after BLR, so later BLR go back there from

callback
I "lis %r24, <target-hi16>; ori %r24, %r24, <target-lo16>; mtlr %r24;

lis %r24, <ret-hi16>; ori %r24, %r24, <ret-lo16>; blr"

21 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Scratch register

Scratch registers used in initial branching
I Arm64, Mips, Sparc & PPC do not allow branch to indirect target in

memory
I Calculate branch target, or used as branch target
I Need scratch register(s) that are unused in local context

F Specified by user via API, or discovered automatically by engine

22 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Flush code cache

Code patching need to be reflected in i-cache
Depend on architecture

I X86: no need
I Arm, Arm64, Mips, PowrPC, Sparc: special syscalls/instructions to

flush/invalidate i-cache
I Linux/GCC has special function: cacheflush(begin, end)

23 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Code boudary & relocation
Need to extract instructions overwritten at instrumentation point

I Determine instruction boundary for X86
I Use Capstone disassembler

Need to rewrite instructions to work at relocated place (trampoline)
I Relative instructions (branch, memory access)
I Use Capstone disassembler to detect instruction type
I Use Keystone assembler to recompile

24 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Code analysis

Avoid overflow to next basic block
I Analysis to detect if basic block is too small for patching

Reduce number of registers saved before callback
Registers to be choosen as scratch registers

25 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Customize on instrumentation

API to setup calling convention
User-defined callback
User-defined trampoline
User-defined scratch registers
User-defined save-restore context
User-defined code to setup callback ars
Patch hooks in batch, or individual
User decide when to write/unwrite memory protect

26 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Skorpio sample C code

27 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Status

Cross-platforms: Windows, Linux, MacOS, BSD
Python binding available
Need to test on Android & iOS
Cross-architecture: X86, Arm, Arm64, Mips, PowerPC, Sparc
More test before public release - soon

28 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Conclusions

SKORPIO is an advanced framework for binary instrumentation
I Open-source, cross-platform-architecture
I All level of customization for better performance
I Dynamic & static instrumentation
I Lay the foundation for future security tools R&D

29 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Acknowledgement

Demo on Darko fuzzer is co-worked with Dr.Wei Lei (NTU)
Huge thanks to @capstone_engine & @keystone_engine communities
for great support!
@_hugsy_ for Qemu images of Mips, PowerPC & Sparc

30 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Questions & answers
SKORPIO: Advanced Binary Instrumentation Framework

NGUYEN Anh Quynh <aquynh -at- gmail.com>

31 / 31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

	Dynamic Binary Instrumentation (DBI)
	Skorpio instrumentation engine
	Demos
	Conclusions

