SKORPIO: Advanced Binary Instrumentation Framework

NGUYEN Anh Quynh <aquynh -at- gmail.com>

OPCDE Dubai, April 7th, 2018

1/31 NGUYEN Anh Quynh

About me

@ Nguyen Anh Quynh, aquynh -at- gmail.com
» Nanyang Technological University, Singapore
PhD in Computer Science
Operating System, Virtual Machine, Binary analysis, etc
Usenix, ACM, IEEE, LNCS, etc
Blackhat USA/EU/Asia, DEFCON, Recon, HacklnTheBox, Syscan, etc
Capstone disassembler: http://capstone-engine.org
Unicorn emulator: http://unicorn-engine.org
Keystone assembler: http://keystone-engine.org

vV VY VY VY VvY VY

eslo \. 4875
& 2z

e & O
w G \\‘\‘ "i‘oﬁer«m\"\e u G\ w ¢

2/31 NGUYEN Anh Quynh

http://capstone-engine.org
http://unicorn-engine.org
http://keystone-engine.org

Agenda

@ Dynamic Binary Instrumentation (DBI)

© Skorpio instrumentation engine

© Demos

@ Conclusions

3/31 NGUYEN Anh Quynh

Dynamic Binary Instrumentation (DBI)

Definition
@ A method of analyzing a binary application at runtime through
injection of instrumentation code.

Extra code executed as a part of original instruction stream
No change to the original behavior

@ Framework to build apps on top of it

Applications

Code tracing/logging
Debugging

Profiling

Security enhancement/mitigation

4/31 NGUYEN Anh Quynh

DBI illustration

Inline
instrumentation

5/31 NGUYEN Anh Quynh

DBI techniques

@ Just-in-Time translation
» Transparently translate & execute code at runtime

* Perform on IR: Valgrind
* Perform directly on native code: DynamoRio

» Better control on code executed
» Heavy, super complicated in design & implementation
@ Hooking

» Lightweight, much simpler to design & implement
» Less control on code executed & need to know in advance where to
instrument

6/31 NGUYEN Anh Quynh

Hooking mechanisms - Inline

@ Inline code injection

» Put instrumented code inline with original code
» Can instrument anywhere & unlimited in extra code injected
» Require complicated code rewrite

oriamateede . - -
. lilbe 1 A 2 3
instrumentation

7/31 NGUYEN Anh Quynh

Hooking mechanisms - Detour

@ Detour injection
» Branch to external instrumentation code
* User-defined CALLBACK as instrumented code
* TRAMPOLINE memory as a step-stone buffer
» Limited on where to hook
* Basic block too small?
» Easier to design & implement

Original o . - -

Detour 3
instrumentation

8/31 NGUYEN Anh Quynh

Detour injection mechanisms

@ Branch from original instruction to instrumented code
@ Branch to trampoline, or directly to callback

» Jump-trampoline technique

» Jump-callback technique

» Call-trampoline technique

» Call-callback technique

original o - -

Detour 3
instrumentation

9/31 NGUYEN Anh Quynh

Jump-trampoline technique

instruction

original

save context

instrumented

10/31

NGUYEN Anh Quynh

restore context

save context

restore context

reloc instruction

JUMP

trampoline

—> callback

Jump-callback technique

instruction

original

save context

instrumented

11/31

NGUYEN Anh Quynh

restore context

reloc instruction

callback

Call-trampoline technique

‘ instruction

original

save context

CALL

instrumented

12/31

NGUYEN Anh Quynh

save context

restore context

reloc instruction

trampoline

— callback

Call-callback technique

instruction

callback

original instrumented

13/31 NGUYEN Anh Quynh

Problems of existing DBI

Limited on platform support
Limited on architecture support

Limited on instrumentation techniques

Limited on optimization

14 /31 NGUYEN Anh Quynh

SKORPIO framework

Open source, with permissive license

Low level framework to build applications on top

» App typically designed as dynamic libraries (DLL/SO/DYLIB)
Cross-platform-architecture

» Windows, MacOS, Linux, BSD, etc

» X86, Arm, Arm64, Mips, Sparc, PowerPC
Allow all kind of instrumentations

» Arbitrary address, in any privilege level

@ Designed to be easy to use, but support all kind of optimization
» Super fast (100x) compared to other frameworks, with proper setup

@ Support static instrumentation, too!

15 /31 NGUYEN Anh Quynh

SKORPIO architecture

Application
API
g)¢ EODEED
[y S

SKORPIO framework

16 /31 NGUYEN Anh Quynh

Cross platform - Memory

@ Thin layer to abstract away platform details
@ Different OS supported in separate plugin

» Posix vs Windows
@ Trampoline buffer

» Allocate memory: malloc() vs VirtualAlloc()
» Memory privilege RWX: mprotect() vs VirtualAlloc()
» Trampoline buffer as close as possible to code to reduce branch
distance
@ Patch code in memory

» Unprotect -> Patch -> Re-protect
» mprotect() vs VirtualProtect()

17 /31 NGUYEN Anh Quynh

Cross architecture - Save/Restore context

@ Save memory/registers modified by initial branch & callback
o Keep the code size as small as possible
@ Depend on architecture + mode

» X86-32: PUSHAD; PUSHFD & POPFD; POPAD
> X86-64 & other CPUs: no simple instruction to save all registers :-(

* Calling convention: cdecl, optlink, pascal, stdcall, fastcall, safecall,
thiscall, vectorcall, Borland, Watcom
* SystemV ABI vs Windows ABI

@ Special API to customize code to save/restore context

18/31 NGUYEN Anh Quynh

Cross architecture - Callback argument

@ Pass user argument to user-defined callback
@ Depend on architecture + mode & calling convention
» SysV/Windows x86-32 vs x86-64

* Windows: cdecl, optlink, pascal, stdcall, fastcall, safecall, thiscall,
vectorcall, Borland, Watcom

v

X86-64: "mov rcx, <value>" or "mov rdi, <value>. Encoding
depends on data value

Arm: "ldr r0, [pc, 0]; b .+8; <4-byte-value>"

Arm64: "movz x0, <lo16>; movk x0, <hil6>, Isl 16"

Mips: "li $a0, <value>"

PPC: "lis %r3, <hil6>; ori %r3, %r3, <lo16>"

vV vyVvYyy

19/31 NGUYEN Anh Quynh

Cross architecture - Branch distance

@ Distance from hooking place to callback cause nightmare :-(
» Some architectures have no explicit support for far branching

* X86-64 JUMP: "push <addr>; ret" or "push 0; mov dword ptr
[rsp+4], <addr>" or "jmp [rip]"

X86-64 CALL: "push <next-addr>; push <target>; ret"

Arm JUMP: "b <addr>" or "ldr pc, [pc, #-4]"

Arm CALL: "bl <addr>" or "add Ir, pc, #4; Idr pc, [pc, #-4]"
Arm64 JUMP: "b <addr>" or "ldr x16, .+8; br x16"

Arm64 CALL: "bl <addr>" or "ldr x16, .+12; blr x16; b .+12"
Mips JUMP: "li $t0, <addr>: jr $t0"

Mips CALL: "li $t0, <addr>; move $t9, $t0; jalr $t0"

Sparc JUMP: "set <addr>, %l4; jmp %l4; nop"

Sparc CALL: "set <addr>, %l4; call %l4; nop"

LD b I I I D S S

20/31 NGUYEN Anh Quynh

Cross architecture - Branch for PPC

e PPC has no far jump instruction :-(
» copy LR to r23, save target address to r24, then copy to LR for BLR
» restore LR from r23 after jumping back from trampoline
> "mflr %r23; lis %r24, <hil6>; ori %r24, %r24, <lo16>; mtlr %r24;
bir"
e PPC has no far call instruction :-(
» save r24 with target address, then copy r24 to LR
> point r24 to instruction after BLR, so later BLR go back there from
callback
> "lis %r24, <target-hil6>; ori %r24, %r24, <target-lo16>; mtlr %r24;
lis %r24, <ret-hil6>; ori %r24, %r24, <ret-lo16>; blr"

SK_INLINE_NO static void bbb_hook(size_t v)
{

// restore LR from R24
_asm__()

printf(

return;

21/31 NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Cross architecture - Scratch register

@ Scratch registers used in initial branching

» Arm64, Mips, Sparc & PPC do not allow branch to indirect target in
memory

» Calculate branch target, or used as branch target
» Need scratch register(s) that are unused in local context

* Specified by user via API, or discovered automatically by engine

22/31 NGUYEN Anh Quynh

Cross architecture - Flush code cache

@ Code patching need to be reflected in i-cache
@ Depend on architecture

> X86: no need

» Arm, Arm64, Mips, PowrPC, Sparc: special syscalls/instructions to
flush/invalidate i-cache

» Linux/GCC has special function: cacheflush(begin, end)

23 /31 NGUYEN Anh Quynh

Code boudary & relocation

@ Need to extract instructions overwritten at instrumentation point
» Determine instruction boundary for X86
» Use Capstone disassembler
@ Need to rewrite instructions to work at relocated place (trampoline)
» Relative instructions (branch, memory access)
» Use Capstone disassembler to detect instruction type
» Use Keystone assembler to recompile

“(0

s S

¥

ﬁ

AS

24 /31 NGUYEN Anh Quynh

Code analysis

@ Avoid overflow to next basic block
» Analysis to detect if basic block is too small for patching

@ Reduce number of registers saved before callback

o Registers to be choosen as scratch registers

25 /31 NGUYEN Anh Quynh

Customize on instrumentation

API to setup calling convention
User-defined callback

User-defined trampoline

User-defined scratch registers
User-defined save-restore context
User-defined code to setup callback ars
Patch hooks in batch, or individual

User decide when to write/unwrite memory protect

26 /31 NGUYEN Anh Quynh

Skorpio sample C code

ample for Skorpio engine

--- Original code
BBB code = 0x400cad, callback = 0x400c80

info:
2
: 0x400cad
[CIRLE 0x400c80
user_data: ox7b
trampoline addr: 0x7f1aa7911000
trampoline size: 86
trampoline code: 5053515257565541504151415241549c48c7c77b0000006a00Cc70424321091a7c74424041a7100006200c70424800c4000c39d415¢c4
152415941585d5e5F5a595b584883ec08b9800c4000baad0c400068ae0c4000C3
Patch size: 14
Patched code: 2500000000001091a71a710000
look original code size: 14
ook original code: 4883ec08b9800Cc4000baad0c4000

- Functions with instrumentation now
inside callback, userdata = 123
BBB code = 0x400cad, callback = 0x400c80

--- Restored original code, now without instrumentation
BBB code = 0x400cad, callback = 0x400c80

NGUYEN Anh Quynh SKORPIO: Advanced Binary Instrumentation Framework

Status

Cross-platforms: Windows, Linux, MacOS, BSD
Python binding available

Need to test on Android & iOS
Cross-architecture: X86, Arm, Arm64, Mips, PowerPC, Sparc

More test before public release - soon

28 /31 NGUYEN Anh Quynh

Conclusions

@ SKORPIO is an advanced framework for binary instrumentation

Open-source, cross-platform-architecture

All level of customization for better performance
Dynamic & static instrumentation

Lay the foundation for future security tools R&D

vV vyVvYyy

€0,

9

G

29 /31 NGUYEN Anh Quynh

Acknowledgement

@ Demo on Darko fuzzer is co-worked with Dr.Wei Lei (NTU)

@ Huge thanks to @capstone engine & Q@keystone engine communities
for great support!

@ @ hugsy for Qemu images of Mips, PowerPC & Sparc

30/31 NGUYEN Anh Quynh

Questions & answers
SKORPIO: Advanced Binary Instrumentation Framework

NGUYEN Anh Quynh <aquynh -at- gmail.com>

31/31 NGUYEN Anh Quynh

	Dynamic Binary Instrumentation (DBI)
	Skorpio instrumentation engine
	Demos
	Conclusions

