DISCOVERING VULNERABLE UEFI
FIRMWARE AT SCALE

Yuriy Bulygin, Alex Bazhaniuk

Presented: September 14, 2017. Last Update: October 14, 2017

Motivation

> We tend to focus on new vulnerabilities in firmware of new systems

> Yet there are still many systems that don't have basic firmware
security “hygiene”

2> And lots of old systems which are in use for years

> Tools like CHIPSEC can help with checking these problems on
individual systems

2 But can we understand the state of entire population of systems?

INTRO TO BASIC UEFI FIRMWARE SECURITY

System Flash

> SPI Flash Memory device(s) containing main UEFI firmware, Intel ME
firmware, GBe persistent settings, EC firmware etc.

> Direct Access by software through physical address space

» OxFFFFFFFFE PA maps to OxFFFFEF Flash Linear Address

2> Program Register Access by software via SPI MMIO registers

> FLA are programmed explicitly

> Descriptor describes other regions

1
2
3
Intel 7 Series Chipset PCH datasheet 4

Flash Descriptor

BIOS

Intel Management Engine
Gigabit Ethernet

Platform Data

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/7-series-chipset-pch-datasheet.pdf

System Flash Descriptor

D> Region0at FLA0O - FFFh (4 KB)
> Signature: OFFOA55Ah at 10h LBA

> Contains the following sections:
> Component: flash device configuration
2> Region: describes other regions

> Master: defines Rd/Wr Access Control table

> Access Control table defines which masters
(CPU, ME, GbE) can access regions

4KB

Management
Engine VSCC
Table

Reserved

C LS

Master

Region

Component

Descriptor

10h

MAP

Security of System Flash

1. Firmware update image must be signed
> UEFI uses “capsules” for signed UEFI updates upon reboot or sleep
> Capsule contains firmware volumes with firmware to be updated
2> Contains firmware executable that performs update
2> Boot-time firmware checks capsule signature before flashing

2. System flash must be read-only at run-time
2> Enforces secure update as SW cannot flash FW at run-time w/o signature checks
2> Some systems check signature & flash at run-time in SMM

3. Flash descriptor must be read-only
> Programmed at manufacturing then never updated

Breaking a Whack-a-Mole

> Usual way to check if system firmware is protected is to run CHIPSEC

> But it requires testing on real hardware

> Sure enough, many platforms (even newest) are found to be vulnerable

> Skylake based MSI
> Gigabyte BRIX BIOS Write Protection is not enabled (CLVA-2017-01-002)

> Coreboot

> Can we scale this analysis, at least for basic firmware protections,
without testing every single system?

http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
https://twitter.com/c7zero/status/846541211431141376
https://twitter.com/c7zero/status/846541211431141376
https://twitter.com/c7zero/status/846541211431141376
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://firmwaresecurity.com/2017/08/03/hardened-linux-coreboot-and-chipsec/

We have tons of UEFI update images from platform vendors.
Let's put them to work!

Can we find out which systems don't protect their system
flash based on just the update images?

On the shoulders of giants

> Amazing work by Teddy Reed

> Analytics, and Scalability, and UEFI exploitation! (Infiltrate 2014)
> UEFI Spider can crawl/download BIOS updates from OEM web-sites

> Tools that can parse UEFI firmware images or “capsules”

> CHIPSEC

> uefi-firmware-parser by Teddy Reed
2> UEFITool by Nikolaj Schlej

https://static1.squarespace.com/static/55f5c9f5e4b0884397609a13/55f5cc48e4b0aba7771b3833/55f5cc48e4b0aba7771b3835/1400824435052/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://static1.squarespace.com/static/55f5c9f5e4b0884397609a13/55f5cc48e4b0aba7771b3833/55f5cc48e4b0aba7771b3835/1400824435052/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://static1.squarespace.com/static/55f5c9f5e4b0884397609a13/55f5cc48e4b0aba7771b3833/55f5cc48e4b0aba7771b3835/1400824435052/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://github.com/theopolis/uefi-spider
https://github.com/chipsec/chipsec
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/LongSoft/UEFITool/

FINDING VULNERABLE PLATFORMS FROM UEFI UPDATES

What If?

mpdate image is not “signed capsule” & contains valid descriptcﬂ

¥

Update is a full ROM image Easily automatable

¥

\ Suspected unsigned firmware update J
4 Actually used as the update image)
‘ Not easily automatable

5 System flash is not protected P

11

What this means exactly...

Every such ROM image would indicate that corresponding platform
model [probably] has the following vulnerabilities

> UEFI firmware update are not signed
> System flash is writeable by software

> SPI flash descriptor is writeable by software

12

High-Level Process

A bunch of downloaded

firmware updates

Even bigger bunch of

candidate firmware

=

& N

. Extract binaries
from update

package which

look like firmware

_ images Y

images

=

e

(&

2. Filter out non
firmware images

o

/

UEFI or full SPI

Images

=

e

(&

3. Parse and
analyze UEFI
firmware and full
SPl images

N

)

13

Let's get started...

> 32987 firmware updates packages from 9 platform vendors

> Acer 647, ASRock 306, ASUS 6871, Dell 9400, Gigabyte 2606, HP 3138,
Intel 4408, Lenovo 2952, MSI 1813

> 44318 candidate images extracted

> Does a binary look like UEFI image? (CHIPSEC, uefi-firmware-parser)
> Other binary heuristics (known magic values etc.)
> File extensions: ROM, BIN, IMG, BIO, CAP, IMA, FD, WPH, HDR, FL*...

> Parsed and analyzed 21204 unique UEFI firmware images (extracted
from 19150 update packages)

> The rest are either legacy BIOSes or we couldn’t extract/parse
14

UEFI “update” must be generic?

> Vendor firmware update != UEFI image or UEFI update image
> There's no standard format of UEFI firmware updates
> Examples of what we saw in firmware update packages:
> May contain update utilities for different OS (EFI, DOS, Windows, Linux)
2> UEFI Images may be encrypted inside updates
2> May contain multiple types of firmware images used in different cases

2> May have firmware images embedded into update tool executables

15

They should be easy to extract, right?

> Try common (de)compression utilities: zip, 7z, zlib-flate.lf
decompression doesn't work: binwalk -e

> Utilities required for update packages of specific vendors
cabextract (Lenovo)
innoextract (Lenovo)
InsydeFlash.exe -cpf (HP)

> Command-line arguments required for self-extracting update packages
/writeromfile (Dell)
/VERYSILENT (Lenovo)

2> Can also try other things

> Mount and extract firmware images if update package if ISO
> Run update package and monitor file system (e.g. temp directories) 16

Searching for SPI descriptors...

> Exclude known UEFI “capsule” images (e.g. *.FL1/FL2/CAP files)
2 Include only images with exact 2MB, 4MB, 8MB, 16MB size

2 Include only images with valid SPI flash descriptor at offset 0x00

2 Include only images with Read/Write-able SPI descriptor

17

Valid Flash Descriptor

HA#HHHHHHHHFHH A HH AR A A HHHH AR HA A H B H A HH A A
SPI FLASH DESCRIPTOR
HAAHHHHHFHHFHHHAHH AR HAAHHHHH AR H A H AR H AR H AR A S

+ Ox0000 Reserved : FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

+ 0x0010 Sighature: OxXOFFOAS55A

P —FEMAPO—=
[00] FCBA = 3 << Flash Component Base Address
[08] NC = @ << Number of Components
[16] FRBA = 4 << Flash Region Base Address

[*] FLMAP1 = 0x58100208 << Flash Map 1 Register (FDBAR + 0x18)
[00] FMBA = 8 << Flash Master Base Address
[08] NM = 2 << Number of Masters
[16] FPSBA 10 << Flash PCH Strap Base Address
[24] PSL = 58 << PCH Strap Length

[*] FLMAP2 = ©x00318330 << Flash Map 2 Register (FDBAR + ©x1C)
[00] FCPUSBA = 30 << Flash CPU Strap Base Address

[08] CPUSL = 3 << CPU Strap Length

Flash Descriptor

BIOS
Intel ME
GBe

FLREGX

00000000
OFFFO700
06FF0003
00020001

00000000
00700000
00003000
00001000

R/W Access to Flash Descriptor

00000000
©OFFFE00
©O6FFB00
00002000

©7FFF000 00000000 (not used)
©7FFFo00 00000000 (not used)

00OO7FFF
©00O7FFF

Platform Data
Embedded Controller

@xFFFFFFO@
@xFFFFFFo@

0x0080 FLMSTRO
0x0084 FLMSTR1

aster Read/Write Access to Flash Regions

© Flash Descriptor
1 BIOS

2 Intel ME

3 GBe

Our Suspects

Unique UEFI Images Analyzed Full SPI Images
Acer 312 3 (1%)
ASRock 440 73 (16.6%)
ASUS 3697 629 (17%)
Dell 4673 78 (1.7%)
Gigabyte 1330 1117 (84%)
HP 1593 94 (5.9%)
Intel 4387 0
Lenovo 3053 75 (2.5%)
MSI 1719 1461 (85%)
Total 21204 3530 (16.6%)

20

False Positives

> Not all update packages containing full SPI images indicate that
corresponding systems are vulnerable

> Some images can only be flashed from USB thumb drive during BIOS
Setup (requires user interaction)

> Some updates packages include full SPI images along with signed
capsules which may be used at manufacturing(?)

21

False Negatives

> Presence of signed capsule in the update package (or absence of full
SPI image) does not mean system flash is protected

> Example: ASUS P8Z77-PRO here

> Update packages may embed SPI images into executables of update
utilities which we couldn't extract

> We excluded images with Read-Only flash descriptor

> Capsule images may be unsigned

22

https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf

Vulnerable Systems

Manufacturer firnY\:Iv?reer?nliEges Vulnerable models

Acer 0-2 0-2

ASRock 73 ~53 models (all older than Skylake)

ASUS 629 ~61 models (all older than Ivy Bridge)

Dell 51 ~11 models (Vostro and Inspiron older than 2014)
Gigabyte 1117 (345 Skylake+) ~247 models including Skylake (6 Gen Intel Core) or newer
HP 11 ~6

Intel 0 0

Lenovo 75 ~26 (ThinkServer TS150-550, ThinkCentre/IdeaCentre)
MSI 1461 (495 Skylake+) ~98 models including Skylake (6 Gen Intel Core) or newer
Total 3417 (16.1%) ~502 models

23

Results: MSI

> 1461 UEFI update images for ~98 models appear to be vulnerable
> Including 496 Skylake (2015) and newer

> Confirmed on some of MSI systems
> Example: MSI H110 PRO-VD

24

Example: MSI H110 PRO-VD (BIOS V2.E)

h Name

7996v2x.txt

7996v2E UEFI update (V2.E) contains full
ROM image intended for flashing under
Windows, DOS or EFI shell with “flashers”
and MSI Live Update

E7996IMS.2E0 8192 K 25

Example: MSI H110 PRO-VD (BIOS V2.E)

FF FF FF FF FF FF FF FF
SA A5 F@ OF 03 00 04 00
FF FF FF FF FF FF FF FF
F4 00 5C 12 @0 00 00 00

00 00 00 00 00 02 FF 07
FF 7F 00 00 FF 7F @0 00
FF 7F @0 @0 FF 7F 00 00
FF FF FF FF FF FF FF FF
00 FF FF FF @0 FF FF FF
00 FF FF EE 00 00 00 00

Full ROM image with R/W flash descriptor

MSI Live Update

Version Release Date File Size

6.2.0.20 2017-09-11 12.48 MB

Description

* Online update BIOS/Driver/Firmware/Utility.

* Live Monitor auto-detects and suggests the latest BIOS/Driver/Utilities information.

Note

1. .net framework 4.0 is required.

2. Antivirus Software need to be disabled to prevent conflict when using Live update utility. LIVE UPDATE 6
User Guide

Results: Gigabyte

> 1117 UEFI update images for ~247 models appear to be vulnerable
> Including 345 Skylake (2015) and newer

28

Results: Dell

> 78 UEFI update images corresponding to 24 models are suspects

> 13 update images for 4 models are false positives. Updates are using
signed capsules but also includes full SPI images

> 51 update images for 11 models appear to be vulnerable
2 Inspiron & Vostro 2011-2014 models with updates up to 2016

> Confirmed on Dell Inspiron 3847 desktop (circa 2013, UEF]
firmware release 06/2015)

2 Investigating 14 update images for 8 models
> Full SPI images with R/W descriptors via option /writeromfile

29

Example: Dell Inspiron 3847

description: Desktop C
product: Ins | e

piron 3847 (o2
vendor: Dell Inc. i

. HIPSEC] API mode
sSerial: 38YJWs2
width: 64 hits
cap?pilities: smbios-2.7 d
contiguration: boot=
<P aot=normal

using CHIPSEC kernel module API

HIPSEC] 0S Linux 4.8.0-54-generic #57"16.04.1-Ubuntu SHP Hed May 24 16:22:28 UTC 2017 x86_6¢
HIPSEC] Platf Desktop 4th Generation Core Processor (Haswell CPU # Lynx Point PCH)
JHIPSEC] VID: 8086

mi-2.7 vsyscalige Mo ol

chassis=desktop £# 1oaded chipsec.modules.comon.blos_wp

i] running loaded modules ..
description: Motherhoard
product: 088DT1

E:]] Inndu module: chipsec.modules.common.bios_wp
vendqr: 4l [x]1 [Module: BIOS Region Write Protection
physical id: o (N

i . [x] BC = 0x08 << BIOS Control (b:d.f 00:31.0 + OxDC)
:g:ﬁmr_" A0l [00] BIOSHE = 0 < BIOS Hrite Enable

al: .38YINS2.CN7016357L01ks ki

slot: To be fi]led :

3
<< SPI Read Configuration
o
*~f irmuare by 0.E.M. x

< Top Swap Status
description: BIOS

051 SMM_BWP = 0 << SHM BIOS Write Protection
I-] BIOS region write protection is disabled!
vendor: pel) Inc.
physical ig: i

[+l BIOS Region: Base = 0x00400000, Limit = OXQOTFFFFF
version: pog SPI Protected Ranges
date: 06/29/2015

-8 PRx (offset) | value
size: 64kip

0
0
2
0

[T

| Base | Limit | WP? | RP?

PRO (74) | 00000000 | 00000000 | 00000000
| 00000000 | 00000000 | 00000000 | O
00000000 | 00000000 | O

00000000
00000000 | O

[1]1 None of the SPI protected ranges write-protect BIOS region

[1] BI0S should enable all available SMM based write protection mechanisms or configure SPI protected range:
(-] FAILED: BIOS is NOT protected completely

Results: Lenovo

Up to 75 UEFI update images for 26 models appear to be vulnerable
(based on the analysis of update packages/images)

Investigating systems which don't seem to protect UEFI firmware:
ThinkServer (TS 150 - 550), ThinkCentre and IdeaCentre

Lenovo Firmware Update Utility 4.5.9
(C) Copyright 1984-2016, Lenovo Group. All Rights Reserved.

Results: HP

> Up to 84 UEFI update packages for ~74 models are suspects
> HP/Compagq business desktops (2011 - 2014)
> All older than Skylake (< 2016)

> 11 update packages (SoftPags) for 6 models appear to be vulnerable
(based on the analysis of update packages)
> Compag Pro 4300, RP2 Retail System 2000/2020/2030, 260 G1,
ProDesk 400 G2.5

> 73 SoftPaqs appear false positives: include signatures over full SPI
images (7 appear to use RSA)

32

Example: HP Z220 (False Positive)

SoftPaq SP76874

BC =

[0 :ai

[@1]
[02]
[@4]
[@5]
[+] BIOS

Contains HPQFlash Windows tool with ROM.CAB
Uses SMM for runtime flashing (SMI # 0x8C)
ROM.CAB includes 16 MB SPI image with some signature over it

Ox2A << BIOS Control (b:d.f 11.8 f > . The BIOS image is corrupted or does not contain the correct digital
BIOSWE @ << BIOS Write ‘S signature. The system BIOS will not be updated.

BLE BIOS Lock E
SRC SPI Read Co

TS5 Top Swap St

SMM_BWP 1 << SMM BIOS Wrl
region write protection is enabled (writes restricted to SMM)

Results: ASUS

> 629 UEFI update images for ~61 models appear to be vulnerable
> All vulnerable systems are older than lvy Bridge (< 2013)

> Starting Ivy Bridge ASUS appears to have switched to using signed
UEFI capsules

34

Results: ASRock

> Only have small pool of downloaded update packages (440)
> 73 UEFI update images for ~53 models appear to be vulnerable
> All vulnerable systems are older than Skylake (< 2016)

35

ANALYZING UEFI UPDATES FOR DEFENSIVE PURPOSES

How to build “white-list” for UEFI?

> We cannot just collect hashes of entire ROM images
2> Contain modifiable data: NVRAM settings, ACPI tables, x509 certificates etc.

2> UEFI firmware volumes contain PE/COFF or TE executables
> 45 - 90 unique executables per UEFI firmware update image on average
2> 100 - 300 executables within full UEFI firmware image on a system

> We can build a list of hashes of known UEFI executables

37

Collecting UEFI hashes...

2 Calculating hashes
> Plain hash over entire PE/COFF image
> Authenticode compliant hashes
> Most platform vendors use Authenticode hashes for (U)EFI binaries
> TPM and UEFI Secure Boot use Authenticode hashes
> All of the above?
2> ~ 1.9M plain or Authenticode compatible hashes
> ~ 1M Authenticode hashes with masked TimeDateStamp field

38

Authenticode Hashes

> Authenticode hash calculation for PE/COFF executables

1. Hash PE header omitting the file's Checkum and the Certificate Table
entry in optional Header Data Directories

2. Hash PE sections

3. Exclude Attribute Certificate Table from the hash calculation and hash
any remaining data

2> Open source Authenticode implementations

2 https://github.com/anthrotype/verify-sigs

2 https://qgithub.com/illphil/authenticode

39

http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://github.com/anthrotype/verify-sigs
https://github.com/anthrotype/verify-sigs
https://github.com/anthrotype/verify-sigs
https://github.com/anthrotype/verify-sigs
https://github.com/illphil/authenticode
https://github.com/illphil/authenticode
https://github.com/illphil/authenticode

PE dt# a>NU
5 " 30 a2

Masking TimeDateStamp field

Unique UEFI Hashes

Unique Hashes Plain Authenticode T’?;tgsggﬁgaildo
Acer 37292 35104 23231 (62%)
ASRock 26168 26170 1671 (6%)
ASUS 559857 549175 171948 (31%)
Dell 485970 476519 234135 (48%)
Gigabyte 168119 158328 109873 (65%)
HP 102631 97524 82632 (80%)
Intel 106924 98562 63363 (59%)
Lenovo 166212 150313 140038 (84%)
MSI 271365 257461 192731 (71%)
Total 1910649 1849156 1034661 (54%)

False Positives

chipsec main.py -1 -n -m tools.uefi.whitelist -a
check,efi lenovo.json,lenovo t430.bin

[+] loaded chipsec.modules.tools.uefi.whitelist
[*] running loaded modules

This module
has never
been part of
any update

[*] running module: chipsec.modules.tools.uefi.whitelist
[*] Module arguments (3):

['check', 'efi lenovo.json', 'lencvo_t430.bin']

[x][

[x][Module: simple white-list generation/checking for (U)EFI firmware

] reading firmware from 'lencvc t430.bin'...
] checking EFI executables against the list '/home/virvdova/chipsec/chipsec/ef]
] found 414 EFI executables in UEFI firmware image 'lenovo_t430.bin'

] found EFI executable not in the list:
9894c265bdd79a01ef94734ccE576eldd]l3T21854dBb1e23ba362349b6728ce2] (s
f22cedcBiBlef57d8ldbfcdBacZ236bececlSb/3a (shal)
{5020F406-5868-44F5-A0BS-6D4031481CC9}

LenovoOemSecPei.efi

enovo.json’

[CHIPSEC] o o o o o b b o b b b b b b b b b b b b b b b b ol SUMMAR‘Y 0 o o o o o o o o o o o o o o o o o o

42

We can also gather statistic on components/
features supported by various systems

43

Example: Absolute Computrace

> UEFI based Anti-Theft technology

> Contains UEFI firmware and OS level components

> Absolute Computrace Revisited

44

https://securelist.com/absolute-computrace-revisited/58278/
https://securelist.com/absolute-computrace-revisited/58278/
https://securelist.com/absolute-computrace-revisited/58278/
https://securelist.com/absolute-computrace-revisited/58278/

We decided to apply complex heuristic...

45

...search for “computrace” in the name

AbsoluteComputracelnstaller
AbsoluteComputracelnstallerWin8
BdsComputrace
BdsSmmComputrace
Computrace
ComputraceComponents
ComputraceDriver
CompuTraceDriver
ComputraceDxe
ComputraceDXE
ComputraceEnablerDxe
ComputracelLoader
ComputraceSMI
ComputraceSmm
ComputraceVariablelnitDxe
DellDxeComputrace
DellSmmComputrace
DellSmmComputraceAcpiMode
DellSmmComputracePrelnit

H19ComputraceRuntimeDxe
H19ComputraceSmm
HPComputrace
HPComputracePrivateSrc
LO5Computrace
LO5CompuTraceDxe
LO5ComputracekEfi
LOSSmmComputrace
LenovoComputraceEnablerDxe
LenovoComputracelLoaderDxe
LenovoComputraceSmiServices
LoadComputracelmage
SmbiosComputraceDxe
smmcomputrace
SmmComputrace
UEFIComputrace
UEFIComputraceDriver
UEFIEfiSmmComputrace
UEFILOSComputrace
UEFILO5SmmComputrace 46

Results

Vendor *Computrace* Modules Unique UEFI Images

Acer 146 57
ASRock o*

ASUS 624 312
Dell 6103 3262
Gigabyte o*

HP 2567 1365
Intel o*

Lenovo 8065 2231
MSI o*

Total 17506 7228

* Modules weren’t found but may still be present under different names

Future Improvements

> Current heuristic “detect full ROM image vs capsule” is imprecise
> Explicitly detect capsules in update packages
> firmware update DXE driver FV (SysFirmUpdate.efi)

2> SystemFirmwareDescriptor PEIM
> Signature in EFI_FIRMWARE IMAGE AUTHENTICATION block

> Detect that ROM images inside update packages support signed capsule
(FmpAuthenticationLib) & secure update (SecSMIFlash, PchBiosWrireProtect)

2 Currently, we cannot answer this question: “Did particular system start
protecting firmware with some update?”
48

Conclusions

> ~3,417 update images corresponding to ~502 models from 9
manufacturers appear to be lacking basic firmware protections

> MSI & Gigabyte account for majority (2,578 images ~ 345 models)
> It's trivial to install firmware implants or brick such systems

> Some manufacturers had basic firmware protections for a while. Yet
older systems may be forgotten

> Some manufacturers started recently (> lvy Bridge or Skylake)

> Some manufacturers yet to start protecting UEFI firmware

49

Conclusions

> Offline analysis of updates can help us understand overall health of
firmware across entire population of systems

2> No need to test each individual system
> Can detect systems lacking basic firmware security protections
> Can be used to scan updates for other more complex problems
2 Not perfect, needs improvements

> Helps vendors understand which systems they forgot to fix

> Can also help us build global database of known firmware binaries

> This is an ongoing study. We'll keep updating it with further results...

50

THANK YOU!

