
DISCOVERING VULNERABLE UEFI

FIRMWARE AT SCALE

Yuriy Bulygin, Alex Bazhaniuk

Presented: September 14, 2017. Last Update: October 14, 2017

We tend to focus on new vulnerabilities in firmware of new systems

Yet there are still many systems that don’t have basic firmware
security “hygiene”

And lots of old systems which are in use for years

Tools like CHIPSEC can help with checking these problems on
individual systems

But can we understand the state of entire population of systems?

Motivation

2

INTRO TO BASIC UEFI FIRMWARE SECURITY

SPI Flash Memory device(s) containing main UEFI firmware, Intel ME
firmware, GBe persistent settings, EC firmware etc.

Direct Access by software through physical address space

0xFFFFFFFF PA maps to 0xFFFFFF Flash Linear Address

Program Register Access by software via SPI MMIO registers

FLA are programmed explicitly

Descriptor describes other regions

System Flash

4

Region Content

0 Flash Descriptor

1 BIOS

2 Intel Management Engine

3 Gigabit Ethernet

4 Platform Data Intel 7 Series Chipset PCH datasheet

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/7-series-chipset-pch-datasheet.pdf

Region 0 at FLA 0 – FFFh (4 KB)

Signature: 0FF0A55Ah at 10h LBA

Contains the following sections:

Component: flash device configuration

Region: describes other regions

Master: defines Rd/Wr Access Control table

Access Control table defines which masters
(CPU, ME, GbE) can access regions

System Flash Descriptor

5 10h Signature

Descriptor
MAP

Component

Region

Master

PCH Soft
Straps

Reserved

Management
Engine VSCC

Table

Descriptor
Upper MAP

OEM Section 4KB

1. Firmware update image must be signed

UEFI uses “capsules” for signed UEFI updates upon reboot or sleep

Capsule contains firmware volumes with firmware to be updated

Contains firmware executable that performs update

Boot-time firmware checks capsule signature before flashing

2. System flash must be read-only at run-time

Enforces secure update as SW cannot flash FW at run-time w/o signature checks

Some systems check signature & flash at run-time in SMM

3. Flash descriptor must be read-only

Programmed at manufacturing then never updated

Security of System Flash

6

Usual way to check if system firmware is protected is to run CHIPSEC

But it requires testing on real hardware

Sure enough, many platforms (even newest) are found to be vulnerable

Skylake based MSI

Gigabyte BRIX BIOS Write Protection is not enabled (CLVA-2017-01-002)

Coreboot

Can we scale this analysis, at least for basic firmware protections,
without testing every single system?

Breaking a Whack-a-Mole

7

http://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
https://twitter.com/c7zero/status/846541211431141376
https://twitter.com/c7zero/status/846541211431141376
https://twitter.com/c7zero/status/846541211431141376
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://github.com/CylanceVulnResearch/disclosures/blob/master/CLVA-2017-01-002.md
https://firmwaresecurity.com/2017/08/03/hardened-linux-coreboot-and-chipsec/

We have tons of UEFI update images from platform vendors.
Let’s put them to work!

Can we find out which systems don’t protect their system
flash based on just the update images?

8

Amazing work by Teddy Reed

Analytics, and Scalability, and UEFI exploitation! (Infiltrate 2014)

UEFI Spider can crawl/download BIOS updates from OEM web-sites

Tools that can parse UEFI firmware images or “capsules”

CHIPSEC

uefi-firmware-parser by Teddy Reed

UEFITool by Nikolaj Schlej

On the shoulders of giants

9

https://static1.squarespace.com/static/55f5c9f5e4b0884397609a13/55f5cc48e4b0aba7771b3833/55f5cc48e4b0aba7771b3835/1400824435052/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://static1.squarespace.com/static/55f5c9f5e4b0884397609a13/55f5cc48e4b0aba7771b3833/55f5cc48e4b0aba7771b3835/1400824435052/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://static1.squarespace.com/static/55f5c9f5e4b0884397609a13/55f5cc48e4b0aba7771b3833/55f5cc48e4b0aba7771b3835/1400824435052/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf
https://github.com/theopolis/uefi-spider
https://github.com/chipsec/chipsec
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/theopolis/uefi-firmware-parser
https://github.com/LongSoft/UEFITool/

FINDING VULNERABLE PLATFORMS FROM UEFI UPDATES

Update image is not “signed capsule” & contains valid descriptor

Update is a full ROM image

Suspected unsigned firmware update

Actually used as the update image

System flash is not protected

What If?

11

Easily automatable

Not easily automatable

Every such ROM image would indicate that corresponding platform
model [probably] has the following vulnerabilities

UEFI firmware update are not signed

System flash is writeable by software

SPI flash descriptor is writeable by software

What this means exactly…

12

High-Level Process

13

1. Extract binaries
from update

package which
look like firmware

images

2. Filter out non
firmware images

3. Parse and
analyze UEFI

firmware and full
SPI images

A bunch of downloaded
firmware updates

Even bigger bunch of
candidate firmware
images

UEFI or full SPI
images

32987 firmware updates packages from 9 platform vendors

Acer 647, ASRock 306, ASUS 6871, Dell 9400, Gigabyte 2606, HP 3138,
Intel 4408, Lenovo 2952, MSI 1813

44318 candidate images extracted

Does a binary look like UEFI image? (CHIPSEC, uefi-firmware-parser)
Other binary heuristics (known magic values etc.)
File extensions: ROM, BIN, IMG, BIO, CAP, IMA, FD, WPH, HDR, FL*…

Parsed and analyzed 21204 unique UEFI firmware images (extracted
from 19150 update packages)

The rest are either legacy BIOSes or we couldn’t extract/parse

Let’s get started…

14

Vendor firmware update != UEFI image or UEFI update image

There’s no standard format of UEFI firmware updates

Examples of what we saw in firmware update packages:

May contain update utilities for different OS (EFI, DOS, Windows, Linux)

UEFI Images may be encrypted inside updates

May contain multiple types of firmware images used in different cases

May have firmware images embedded into update tool executables

UEFI “update” must be generic?

15

Try common (de)compression utilities: zip, 7z, zlib-flate. If
decompression doesn’t work: binwalk –e

Utilities required for update packages of specific vendors

cabextract (Lenovo)

innoextract (Lenovo)

InsydeFlash.exe –cpf (HP)

Command-line arguments required for self-extracting update packages

/writeromfile (Dell)

/VERYSILENT (Lenovo)

Can also try other things
Mount and extract firmware images if update package if ISO
Run update package and monitor file system (e.g. temp directories)

They should be easy to extract, right?

16

Exclude known UEFI “capsule” images (e.g. *.FL1/FL2/CAP files)

Include only images with exact 2MB, 4MB, 8MB, 16MB size

Include only images with valid SPI flash descriptor at offset 0x00

Include only images with Read/Write-able SPI descriptor

Searching for SPI descriptors…

17

Valid Flash Descriptor

18

R/W Access to Flash Descriptor

19

R/W Flash Descriptor

Our Suspects

20

Unique UEFI Images Analyzed Full SPI Images

Acer 312 3 (1%)

ASRock 440 73 (16.6%)

ASUS 3697 629 (17%)

Dell 4673 78 (1.7%)

Gigabyte 1330 1117 (84%)

HP 1593 94 (5.9%)

Intel 4387 0

Lenovo 3053 75 (2.5%)

MSI 1719 1461 (85%)

Total 21204 3530 (16.6%)

Not all update packages containing full SPI images indicate that
corresponding systems are vulnerable

Some images can only be flashed from USB thumb drive during BIOS
Setup (requires user interaction)

Some updates packages include full SPI images along with signed
capsules which may be used at manufacturing(?)

False Positives

21

Presence of signed capsule in the update package (or absence of full
SPI image) does not mean system flash is protected

Example: ASUS P8Z77-PRO here

Update packages may embed SPI images into executables of update
utilities which we couldn’t extract

We excluded images with Read-Only flash descriptor

Capsule images may be unsigned

False Negatives

22

https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf

Vulnerable Systems

23

Manufacturer
Vulnerable

firmware images
Vulnerable models

Acer 0 - 2 0 – 2

ASRock 73 ~53 models (all older than Skylake)

ASUS 629 ~61 models (all older than Ivy Bridge)

Dell 51 ~11 models (Vostro and Inspiron older than 2014)

Gigabyte 1117 (345 Skylake+) ~247 models including Skylake (6 Gen Intel Core) or newer

HP 11 ~6

Intel 0 0

Lenovo 75 ~26 (ThinkServer TS150-550, ThinkCentre/IdeaCentre)

MSI 1461 (495 Skylake+) ~98 models including Skylake (6 Gen Intel Core) or newer

Total 3417 (16.1%) ~502 models

1461 UEFI update images for ~98 models appear to be vulnerable

Including 496 Skylake (2015) and newer

Confirmed on some of MSI systems

Example: MSI H110 PRO-VD

Results: MSI

24

Example: MSI H110 PRO-VD (BIOS V2.E)

25

7996v2E UEFI update (V2.E) contains full
ROM image intended for flashing under
Windows, DOS or EFI shell with “flashers”
and MSI Live Update

Example: MSI H110 PRO-VD (BIOS V2.E)

26

Full ROM image with R/W flash descriptor

MSI Live Update

27

1117 UEFI update images for ~247 models appear to be vulnerable

Including 345 Skylake (2015) and newer

Results: Gigabyte

28

78 UEFI update images corresponding to 24 models are suspects

13 update images for 4 models are false positives. Updates are using
signed capsules but also includes full SPI images

51 update images for 11 models appear to be vulnerable

Inspiron & Vostro 2011–2014 models with updates up to 2016

Confirmed on Dell Inspiron 3847 desktop (circa 2013, UEFI
firmware release 06/2015)

Investigating 14 update images for 8 models

Full SPI images with R/W descriptors via option /writeromfile

Results: Dell

29

Example: Dell Inspiron 3847

30

Up to 75 UEFI update images for 26 models appear to be vulnerable
(based on the analysis of update packages/images)

Investigating systems which don’t seem to protect UEFI firmware:
ThinkServer (TS 150 - 550), ThinkCentre and IdeaCentre

Results: Lenovo

31

Lenovo Flasher
1984 – 2016!!! 32 years!!!

Up to 84 UEFI update packages for ~74 models are suspects

HP/Compaq business desktops (2011 - 2014)

All older than Skylake (< 2016)

11 update packages (SoftPaqs) for 6 models appear to be vulnerable
(based on the analysis of update packages)

Compaq Pro 4300, RP2 Retail System 2000/2020/2030, 260 G1,
ProDesk 400 G2.5

73 SoftPaqs appear false positives: include signatures over full SPI
images (7 appear to use RSA)

Results: HP

32

SoftPaq SP76874

Contains HPQFlash Windows tool with ROM.CAB

Uses SMM for runtime flashing (SMI # 0x8C)

ROM.CAB includes 16MB SPI image with some signature over it

Example: HP Z220 (False Positive)

33

629 UEFI update images for ~61 models appear to be vulnerable

All vulnerable systems are older than Ivy Bridge (< 2013)

Starting Ivy Bridge ASUS appears to have switched to using signed
UEFI capsules

Results: ASUS

34

Only have small pool of downloaded update packages (440)

73 UEFI update images for ~53 models appear to be vulnerable

All vulnerable systems are older than Skylake (< 2016)

Results: ASRock

35

ANALYZING UEFI UPDATES FOR DEFENSIVE PURPOSES

We cannot just collect hashes of entire ROM images

Contain modifiable data: NVRAM settings, ACPI tables, x509 certificates etc.

UEFI firmware volumes contain PE/COFF or TE executables

45 – 90 unique executables per UEFI firmware update image on average

100 - 300 executables within full UEFI firmware image on a system

We can build a list of hashes of known UEFI executables

How to build “white-list” for UEFI?

37

Calculating hashes

Plain hash over entire PE/COFF image

Authenticode compliant hashes

Most platform vendors use Authenticode hashes for (U)EFI binaries

TPM and UEFI Secure Boot use Authenticode hashes

All of the above?

~ 1.9M plain or Authenticode compatible hashes

~ 1M Authenticode hashes with masked TimeDateStamp field

Collecting UEFI hashes…

38

Authenticode hash calculation for PE/COFF executables

1. Hash PE header omitting the file's Checkum and the Certificate Table
entry in optional Header Data Directories

2. Hash PE sections

3. Exclude Attribute Certificate Table from the hash calculation and hash
any remaining data

Open source Authenticode implementations

https://github.com/anthrotype/verify-sigs

https://github.com/illphil/authenticode

Authenticode Hashes

39

http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
https://github.com/anthrotype/verify-sigs
https://github.com/anthrotype/verify-sigs
https://github.com/anthrotype/verify-sigs
https://github.com/anthrotype/verify-sigs
https://github.com/illphil/authenticode
https://github.com/illphil/authenticode
https://github.com/illphil/authenticode

40

Masking TimeDateStamp field

Unique UEFI Hashes

41

Unique Hashes Plain Authenticode
Authenticode and

TimeDateStamp=0

Acer 37292 35104 23231 (62%)

ASRock 26168 26170 1671 (6%)

ASUS 559857 549175 171948 (31%)

Dell 485970 476519 234135 (48%)

Gigabyte 168119 158328 109873 (65%)

HP 102631 97524 82632 (80%)

Intel 106924 98562 63363 (59%)

Lenovo 166212 150313 140038 (84%)

MSI 271365 257461 192731 (71%)

Total 1910649 1849156 1034661 (54%)

chipsec_main.py -i -n -m tools.uefi.whitelist -a

check,efi_lenovo.json,lenovo_t430.bin

False Positives

42

This module
has never

been part of
any update

We can also gather statistic on components/
features supported by various systems

43

UEFI based Anti-Theft technology

Contains UEFI firmware and OS level components

Absolute Computrace Revisited

Example: Absolute Computrace

44

https://securelist.com/absolute-computrace-revisited/58278/
https://securelist.com/absolute-computrace-revisited/58278/
https://securelist.com/absolute-computrace-revisited/58278/
https://securelist.com/absolute-computrace-revisited/58278/

We decided to apply complex heuristic…

45

…search for “computrace” in the name

46

AbsoluteComputraceInstaller
AbsoluteComputraceInstallerWin8
BdsComputrace
BdsSmmComputrace
Computrace
ComputraceComponents
ComputraceDriver
CompuTraceDriver
ComputraceDxe
ComputraceDXE
ComputraceEnablerDxe
ComputraceLoader
ComputraceSMI
ComputraceSmm
ComputraceVariableInitDxe
DellDxeComputrace
DellSmmComputrace
DellSmmComputraceAcpiMode
DellSmmComputracePreInit

H19ComputraceRuntimeDxe
H19ComputraceSmm
HPComputrace
HPComputracePrivateSrc
L05Computrace
L05CompuTraceDxe
L05ComputraceEfi
L05SmmComputrace
LenovoComputraceEnablerDxe
LenovoComputraceLoaderDxe
LenovoComputraceSmiServices
LoadComputraceImage
SmbiosComputraceDxe
smmcomputrace
SmmComputrace
UEFIComputrace
UEFIComputraceDriver
UEFIEfiSmmComputrace
UEFIL05Computrace
UEFIL05SmmComputrace

Results

47

Vendor *Computrace* Modules Unique UEFI Images

Acer 146 57

ASRock 0*

ASUS 624 312

Dell 6103 3262

Gigabyte 0*

HP 2567 1365

Intel 0*

Lenovo 8065 2231

MSI 0*

Total 17506 7228

* Modules weren’t found but may still be present under different names

Current heuristic “detect full ROM image vs capsule” is imprecise

Explicitly detect capsules in update packages

firmware update DXE driver FV (SysFirmUpdate.efi)

SystemFirmwareDescriptor PEIM

Signature in EFI_FIRMWARE_IMAGE_AUTHENTICATION block

Detect that ROM images inside update packages support signed capsule
(FmpAuthenticationLib) & secure update (SecSMIFlash, PchBiosWrireProtect)

Currently, we cannot answer this question: “Did particular system start
protecting firmware with some update?”

Future Improvements

48

~3,417 update images corresponding to ~502 models from 9
manufacturers appear to be lacking basic firmware protections

MSI & Gigabyte account for majority (2,578 images ~ 345 models)

It’s trivial to install firmware implants or brick such systems

Some manufacturers had basic firmware protections for a while. Yet
older systems may be forgotten

Some manufacturers started recently (> Ivy Bridge or Skylake)

Some manufacturers yet to start protecting UEFI firmware

Conclusions

49

Offline analysis of updates can help us understand overall health of
firmware across entire population of systems

No need to test each individual system

Can detect systems lacking basic firmware security protections

Can be used to scan updates for other more complex problems

Not perfect, needs improvements

Helps vendors understand which systems they forgot to fix

Can also help us build global database of known firmware binaries

This is an ongoing study. We’ll keep updating it with further results…

Conclusions

50

THANK YOU!

