# Cognitive Ecosystem Modeling Framework A comprehensive framework for modeling cognitive ecosystems using [[active_inference|Active Inference]], integrated with [[docs/guides/obsidian_linking|Obsidian]] for knowledge management. ## Overview This project combines cognitive modeling with knowledge management to create a powerful framework for: - Modeling agent behaviors using [[active_inference|Active Inference]] - Managing complex [[knowledge_organization|knowledge structures]] - Visualizing and analyzing [[knowledge_base/cognitive/cognitive_phenomena|cognitive networks]] - Simulating multi-agent interactions ## Project Structure See [[ai_folder_structure]] for comprehensive directory organization. 📁 docs/ # Documentation (See [[docs/guides/documentation_standards|Documentation Standards]]) 📁 tests/ # Test suite (See [[docs/guides/unit_testing|Unit Testing Guide]]) 📁 data/ # Data storage ## Features ### Knowledge Management - [[docs/guides/obsidian_linking|Obsidian-compatible markdown files]] - [[docs/guides/linking_completeness|Bidirectional linking]] - [[docs/templates/ai_concept_template|Template-based node creation]] - [[docs/guides/ai_validation_framework|Automated relationship tracking]] ### Cognitive Modeling - [[knowledge_base/cognitive/active_inference|Active Inference implementation]] - [[knowledge_base/mathematics/belief_updating|Belief updating mechanisms]] - [[knowledge_base/cognitive/action_selection|Policy selection algorithms]] - [[knowledge_base/cognitive/predictive_processing|State estimation tools]] ### Analysis & Visualization - [[docs/tools/network_analysis|Network analysis]] - [[docs/concepts/quality_metrics|Performance metrics]] - [[docs/tools/visualization|Interactive visualizations]] - [[docs/guides/simulation|Simulation frameworks]] ## Knowledge Integration Architecture ### Bidirectional Knowledge Graph The framework leverages [[docs/guides/obsidian_linking|Obsidian's linking capabilities]] to create a living knowledge graph that: - Enforces [[docs/guides/validation|mathematical and theoretical consistency]] - Enables [[docs/guides/ai_validation_framework|automated validation]] of relationships - Supports [[docs/guides/machine_learning|dynamic discovery]] of dependencies - Facilitates [[docs/guides/research|learning through exploration]] #### Link Types and Semantics See [[docs/guides/linking_completeness]] for comprehensive linking patterns. 1. Theoretical Dependencies ```markdown [[knowledge_base/mathematics/measure_theory]] → [[knowledge_base/mathematics/probability_theory]] → [[knowledge_base/cognitive/stochastic_processes]] ``` - Enforces prerequisite knowledge - Validates theoretical foundations - Ensures consistent notation 2. Implementation Dependencies ```markdown [[knowledge_base/cognitive/active_inference]] → [[knowledge_base/mathematics/belief_updating]] → [[knowledge_base/cognitive/action_selection]] ``` - Tracks computational requirements - Maintains implementation consistency - Documents design decisions 3. Validation Links ```markdown [[docs/guides/unit_testing]] → [[docs/guides/validation]] → [[docs/concepts/quality_metrics]] ``` - Ensures rigorous testing - Maintains quality standards - Documents validation procedures ### Meta-Programming Capabilities #### Code Generation ```python def generate_model_code(spec_file: Path) -> str: """Generate implementation from specifications. See [[docs/guides/ai_documentation_style]] for code generation patterns. """ # Parse markdown specifications spec = parse_markdown_spec(spec_file) # Extract probabilistic model model = extract_probabilistic_model(spec) # Generate implementation return generate_implementation(model) ``` #### Validation Rules ```python def check_probabilistic_consistency(): """Verify probabilistic consistency. See [[docs/guides/validation]] for validation rules. """ # Check matrix constraints verify_stochastic_matrices() # Validate probability measures verify_measure_consistency() # Check inference specifications verify_inference_methods() ``` ### Benefits 1. **Theoretical Consistency** - [[docs/guides/ai_validation_framework|Automated validation]] of mathematical relationships - Enforcement of probabilistic constraints - Verification of implementation patterns 2. **Learning Support** - [[docs/guides/research|Guided exploration]] of concepts - Clear dependency tracking - Interactive knowledge discovery 3. **Implementation Quality** - [[docs/guides/ai_documentation_style|Automated code generation]] - Consistent design patterns - [[docs/guides/unit_testing|Rigorous testing framework]] 4. **Documentation Integration** - [[docs/guides/documentation_standards|Living documentation]] - [[docs/guides/package_documentation|Executable specifications]] - [[docs/guides/ai_validation_framework|Automated validation]]