# Theoretical Foundations --- title: Theoretical Foundations type: concept status: stable created: 2024-02-06 tags: - theory - foundations - concepts - architecture semantic_relations: - type: implements links: [[documentation_standards]] - type: relates links: - [[knowledge_base/cognitive/active_inference|Active Inference Theory]] - [[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]] - [[machine_readability]] --- ## Overview This document outlines the theoretical foundations that underpin our cognitive modeling framework's documentation system, integrating principles from cognitive science, knowledge representation, and machine learning. For comprehensive cognitive science theory, see the [[knowledge_base/cognitive/cognitive_science|Cognitive Science Knowledge Base]]. ## Core Principles ### 1. Knowledge Representation ```python # @knowledge_structure knowledge_model = { "hierarchical": { "concepts": ["[[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]]", "[[theoretical_foundations]]"], "implementations": ["[[knowledge_base/cognitive/active_inference|Active Inference]]", "[[belief_updating]]"], "validations": ["[[validation_framework]]", "[[testing_guide]]"] }, "relational": { "bidirectional": ["[[linking_completeness]]", "[[linking_patterns]]"], "semantic": ["[[ai_semantic_processing]]", "[[machine_readability]]"], "temporal": ["[[version_control]]", "[[changelog]]"] } } ``` ### 2. Cognitive Architecture See [[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]] for detailed theory. #### Active Inference Framework - [[knowledge_base/cognitive/active_inference|Active Inference]] - Core computational theory - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - Theoretical foundation - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]] - Information processing model #### Belief Systems - [[belief_updating]] - Dynamic belief updates - [[belief_systems]] - Belief architecture - [[probabilistic_modeling]] - Uncertainty handling #### Action Selection - [[action_selection]] - Decision making - [[policy_selection]] - Strategy choice - [[goal_hierarchies]] - Objective organization ## Documentation Integration ### 1. Machine Readability See [[machine_readability]] for implementation details. ```python # @documentation_structure doc_structure = { "semantic_markup": { "concepts": "[[concept_template]]", "implementations": "[[implementation_template]]", "relationships": "[[relationship_template]]" }, "validation_rules": { "completeness": "[[validation_framework]]", "consistency": "[[linking_validation]]", "quality": "[[quality_metrics]]" } } ``` ### 2. Knowledge Organization See [[knowledge_organization]] for detailed patterns. #### Hierarchical Structure - Top-level concepts ([[theoretical_foundations]]) - Implementation details ([[implementation_patterns]]) - Validation frameworks ([[validation_framework]]) #### Network Structure - Bidirectional links ([[linking_completeness]]) - Semantic relationships ([[ai_semantic_processing]]) - Graph analysis ([[network_analysis]]) ### 3. Version Management See [[version_control]] for implementation. ```python # @version_management version_structure = { "documentation": { "current": "[[api_reference]]", "history": "[[changelog]]", "migrations": "[[migration_guide]]" }, "code": { "releases": "[[release_management]]", "branches": "[[branching_strategy]]", "tags": "[[version_tags]]" } } ``` ## Implementation Architecture ### 1. Documentation System ```python # @doc_system class DocumentationSystem: """ Core documentation system architecture. See [[documentation_standards]] for guidelines. """ def __init__(self): self.knowledge_base = KnowledgeGraph() self.validator = ValidationFramework() self.processor = SemanticProcessor() def process_document(self, doc: Document) -> ValidationResult: """ Process and validate documentation. See [[ai_validation_framework]] for details. """ # Implementation pass ``` ### 2. Knowledge Graph ```python # @knowledge_graph class KnowledgeGraph: """ Knowledge graph implementation. See [[knowledge_organization]] for structure. """ def __init__(self): self.nodes = {} # Concept nodes self.edges = {} # Relationships self.metadata = {} # Node metadata def add_relationship(self, source: Node, target: Node, type: str): """ Add semantic relationship. See [[linking_patterns]] for valid types. """ # Implementation pass ``` ### 3. Validation System ```python # @validation_system class ValidationSystem: """ Documentation validation system. See [[validation_framework]] for rules. """ def __init__(self): self.rules = self.load_rules() self.metrics = QualityMetrics() def validate_document(self, doc: Document) -> ValidationResult: """ Validate documentation against rules. See [[quality_metrics]] for criteria. """ # Implementation pass ``` ## Theoretical Integration ### 1. Cognitive-Documentation Mapping ```mermaid graph TD A[Cognitive Architecture] --> B[Documentation Structure] B --> C[Knowledge Graph] C --> D[Validation System] E[Active Inference] --> F[Information Processing] F --> G[Knowledge Organization] G --> H[Quality Metrics] ``` ### 2. Processing Pipeline ```mermaid graph LR A[Document Input] --> B[Semantic Processing] B --> C[Knowledge Integration] C --> D[Validation] D --> E[Quality Assessment] ``` ## Quality Framework ### 1. Documentation Quality See [[quality_metrics]] for detailed criteria. ```python # @quality_framework quality_metrics = { "completeness": { "required_sections": 0.95, # 95% coverage "optional_sections": 0.80, # 80% coverage "link_coverage": 0.90 # 90% link coverage }, "consistency": { "style_compliance": 0.95, # 95% style compliance "link_validity": 1.0, # 100% valid links "metadata_validity": 1.0 # 100% valid metadata } } ``` ### 2. Validation Rules See [[validation_framework]] for implementation. ```python # @validation_rules validation_rules = { "structural": { "required_links": ["concept", "implementation"], "optional_links": ["example", "reference"] }, "semantic": { "relationship_types": ["implements", "relates", "extends"], "metadata_fields": ["title", "type", "status"] } } ``` ## Best Practices ### 1. Documentation Development - Follow [[documentation_standards]] - Use [[ai_documentation_style]] - Implement [[linking_patterns]] - Validate with [[quality_metrics]] ### 2. Knowledge Management - Maintain [[knowledge_organization]] - Update [[linking_completeness]] - Follow [[version_control]] - Use [[semantic_processing]] ### 3. Quality Assurance - Run [[validation_framework]] - Check [[quality_metrics]] - Review [[linking_validation]] - Monitor [[performance_metrics]] ## Related Documentation - [[documentation_standards]] - [[knowledge_organization]] - [[validation_framework]] - [[quality_metrics]] ## References - [[knowledge_base/cognitive/cognitive_phenomena|Cognitive Phenomena]] - [[knowledge_base/cognitive/active_inference|Active Inference]] - [[machine_readability]] - [[implementation_patterns]]