--- title: Examples Index type: index status: stable created: 2024-02-07 tags: - examples - implementation - index semantic_relations: - type: organizes links: - [[implementation_examples]] - [[usage_examples]] --- # Examples Index ## Core Examples ### Active Inference Examples - [[examples/active_inference/basic|Basic Active Inference]] - [[examples/active_inference/hierarchical|Hierarchical Active Inference]] - [[examples/active_inference/multi_agent|Multi-Agent Active Inference]] ### POMDP Examples - [[examples/pomdp/basic|Basic POMDP]] - [[examples/pomdp/belief_updating|Belief Updating]] - [[examples/pomdp/policy_selection|Policy Selection]] ### Swarm Intelligence Examples - [[examples/swarm/ant_colony|Ant Colony Simulation]] - [[examples/swarm/particle_swarm|Particle Swarm]] - [[examples/swarm/flocking|Flocking Behavior]] ## Implementation Examples ### Agent Implementation ```python # Basic active inference agent class ActiveInferenceAgent: def __init__(self, config): self.beliefs = initialize_beliefs() self.model = create_generative_model() def update(self, observation): # Update beliefs using variational inference self.beliefs = update_beliefs( self.beliefs, observation, self.model ) # Select action using expected free energy action = select_action(self.beliefs, self.model) return action ``` ### Environment Implementation ```python # Basic environment setup class Environment: def __init__(self, config): self.state = initialize_state() self.agents = create_agents() def step(self, actions): # Update environment state self.state = update_state(self.state, actions) # Generate observations observations = generate_observations(self.state) return observations ``` ### Simulation Implementation ```python # Basic simulation loop def run_simulation(config): env = Environment(config) agent = ActiveInferenceAgent(config) for step in range(config.max_steps): # Agent-environment interaction observation = env.get_observation() action = agent.update(observation) env.step(action) ``` ## Advanced Examples ### Hierarchical Systems - [[examples/hierarchical/perception|Hierarchical Perception]] - [[examples/hierarchical/control|Hierarchical Control]] - [[examples/hierarchical/learning|Hierarchical Learning]] ### Multi-Agent Systems - [[examples/multi_agent/coordination|Agent Coordination]] - [[examples/multi_agent/communication|Agent Communication]] - [[examples/multi_agent/learning|Collective Learning]] ### Complex Systems - [[examples/complex/emergence|Emergence Patterns]] - [[examples/complex/adaptation|System Adaptation]] - [[examples/complex/evolution|System Evolution]] ## Application Examples ### Robotics Applications - [[examples/robotics/control|Robot Control]] - [[examples/robotics/navigation|Robot Navigation]] - [[examples/robotics/manipulation|Robot Manipulation]] ### Cognitive Applications - [[examples/cognitive/learning|Learning Systems]] - [[examples/cognitive/memory|Memory Systems]] - [[examples/cognitive/attention|Attention Systems]] ### Biological Applications - [[examples/biological/neural|Neural Systems]] - [[examples/biological/collective|Collective Behavior]] - [[examples/biological/adaptation|Adaptive Behavior]] ## Integration Examples ### Framework Integration - [[examples/integration/pytorch|PyTorch Integration]] - [[examples/integration/tensorflow|TensorFlow Integration]] - [[examples/integration/jax|JAX Integration]] ### Tool Integration - [[examples/tools/visualization|Visualization Tools]] - [[examples/tools/analysis|Analysis Tools]] - [[examples/tools/profiling|Profiling Tools]] ### System Integration - [[examples/systems/environment|Environment Integration]] - [[examples/systems/hardware|Hardware Integration]] - [[examples/systems/distributed|Distributed Systems]] ## Testing Examples ### Unit Tests ```python def test_belief_updating(): """Test belief updating mechanism.""" agent = setup_test_agent() observation = generate_test_observation() initial_beliefs = agent.beliefs.copy() agent.update(observation) assert not np.allclose(agent.beliefs, initial_beliefs) assert is_normalized(agent.beliefs) ``` ### Integration Tests ```python def test_agent_environment(): """Test agent-environment interaction.""" env = setup_test_environment() agent = setup_test_agent() observation = env.reset() for _ in range(100): action = agent.update(observation) observation, reward, done = env.step(action) if done: break ``` ### Performance Tests ```python def test_performance(): """Test system performance.""" env = setup_benchmark_environment() agent = setup_benchmark_agent() start_time = time.time() run_benchmark(env, agent) end_time = time.time() assert end_time - start_time < MAX_TIME ``` ## Related Resources ### Documentation - [[docs/guides/implementation_guides|Implementation Guides]] - [[docs/api/implementation_api|Implementation API]] - [[docs/research/implementation_research|Implementation Research]] ### Knowledge Base - [[knowledge_base/cognitive/implementation_concepts|Implementation Concepts]] - [[knowledge_base/mathematics/implementation_math|Implementation Mathematics]] - [[knowledge_base/agents/implementation_patterns|Implementation Patterns]] ### Learning Resources - [[learning_paths/implementation|Implementation Learning Path]] - [[tutorials/implementation|Implementation Tutorials]] - [[guides/implementation/best_practices|Implementation Best Practices]]