# AI-Oriented File Organization --- title: AI File Organization Guide type: guide status: stable created: 2024-02-06 tags: - organization - structure - ai - metadata related: - [[ai_documentation_style]] - [[knowledge_organization]] - [[machine_readability]] --- ## Overview This guide defines the file organization structure optimized for AI processing, knowledge graph construction, and intelligent navigation of the cognitive modeling system. ## Directory Structure ### Root Organization ``` cognitive_modeling/ ├── docs/ # Documentation root │ ├── concepts/ # Core concepts │ │ ├── atomic/ # Fundamental concepts │ │ ├── composite/ # Combined concepts │ │ └── meta/ # Meta-concepts │ │ │ ├── implementations/ # Implementation details │ │ ├── core/ # Core implementations │ │ ├── extensions/ # Extended features │ │ └── integrations/ # System integrations │ │ │ ├── knowledge_base/ # Knowledge representation │ │ ├── ontology/ # Domain ontologies │ │ ├── graphs/ # Knowledge graphs │ │ └── embeddings/ # Neural embeddings │ │ │ ├── ml_artifacts/ # Machine learning artifacts │ │ ├── models/ # Model specifications │ │ ├── training/ # Training configurations │ │ └── evaluation/ # Evaluation metrics │ │ │ └── validation/ # Validation framework │ ├── tests/ # Test specifications │ ├── metrics/ # Quality metrics │ └── reports/ # Validation reports ``` ## File Naming Conventions ### Pattern Specifications ```python file_patterns = { 'concepts': { 'pattern': '{category}_{name}_{version}.md', 'example': 'belief_updating_v1.md' }, 'implementations': { 'pattern': 'impl_{system}_{component}_{version}.md', 'example': 'impl_inference_engine_v2.md' }, 'knowledge': { 'pattern': 'kb_{domain}_{concept}_{type}.md', 'example': 'kb_cognitive_belief_ontology.md' }, 'ml': { 'pattern': 'ml_{task}_{model}_{version}.md', 'example': 'ml_classification_transformer_v1.md' } } ``` ### Metadata Structure ```yaml file_metadata: naming: prefix: string # Category prefix body: string # Main identifier version: string # Version identifier extension: string # File extension processing: priority: integer # Processing priority dependencies: list # File dependencies validation: string # Validation requirements ``` ## Directory Metadata ### Directory Configuration ```yaml directory_config: concepts: index_required: true graph_required: true validation_required: true implementations: index_required: true tests_required: true documentation_required: true knowledge_base: ontology_required: true embeddings_required: true graph_required: true ``` ### Processing Instructions ```yaml processing_config: parallel_processing: boolean dependency_checking: string validation_level: string caching_strategy: string ``` ## Knowledge Organization ### Concept Hierarchy ```mermaid graph TD A[Root Concepts] --> B[Atomic Concepts] A --> C[Composite Concepts] B --> D[Properties] B --> E[Relations] C --> F[Patterns] C --> G[Systems] ``` ### Implementation Structure ```mermaid graph LR A[Core] --> B[Components] B --> C[Interfaces] B --> D[Implementations] D --> E[Extensions] D --> F[Integrations] ``` ## File Templates ### Concept File Template ```markdown # Concept: {name} #BEGIN_METADATA version: string category: string complexity: string #END_METADATA #BEGIN_CONTENT content: string #END_CONTENT #BEGIN_VALIDATION validation: object #END_VALIDATION ``` ### Implementation File Template ```markdown # Implementation: {name} #BEGIN_METADATA version: string system: string component: string #END_METADATA #BEGIN_SPECIFICATION specification: object #END_SPECIFICATION #BEGIN_VALIDATION validation: object #END_VALIDATION ``` ## Validation Rules ### Directory Validation ```python # @directory_validation { "required_files": ["index.md", "README.md"], "required_metadata": ["version", "status"], "required_structures": ["graph", "validation"] } ``` ### File Validation ```python # @file_validation { "naming_convention": bool, "metadata_complete": bool, "content_valid": bool, "links_valid": bool } ``` ## Integration Guidelines ### Knowledge Graph Integration ```python # @graph_integration def integrate_knowledge(): """ Integration steps: 1. Parse directory structure 2. Extract metadata 3. Build relationships 4. Validate graph """ pass ``` ### Machine Learning Pipeline ```python # @ml_pipeline def process_documentation(): """ Processing steps: 1. Extract features 2. Generate embeddings 3. Train models 4. Validate results """ pass ``` ## Best Practices ### Organization Principles 1. **Hierarchical Clarity** - Clear parent-child relationships - Logical grouping of related content - Consistent depth levels 2. **Metadata Management** - Complete metadata at all levels - Consistent metadata schema - Regular validation 3. **Processing Optimization** - Efficient file access patterns - Optimized for parallel processing - Caching-friendly structure ## Related Documentation - [[ai_documentation_style]] - [[knowledge_graph_structure]] - [[validation_framework]] - [[ml_integration_guide]] ## References - [[file_organization_patterns]] - [[metadata_standards]] - [[processing_optimization]] - [[validation_methods]]