--- title: Active Inference in Ant Colony Behavior type: research status: stable created: 2024-02-07 tags: - active_inference - ant_colony - collective_behavior semantic_relations: - type: implements links: [[research_document_template]] - type: relates links: - [[knowledge_base/cognitive/collective_behavior]] - [[knowledge_base/cognitive/active_inference]] --- # Active Inference in Ant Colony Behavior ## Overview ### Research Question How can active inference principles explain and model emergent collective behavior in ant colonies, particularly in foraging and path optimization? ### Significance Understanding how simple agents using active inference principles can produce complex collective behaviors has implications for both biological systems and artificial swarm intelligence. ### Related Work - [[knowledge_base/cognitive/collective_behavior_ants|Ant Colony Behavior]] - [[knowledge_base/cognitive/stigmergic_coordination|Stigmergic Coordination]] - [[knowledge_base/cognitive/swarm_intelligence|Swarm Intelligence]] ## Theoretical Framework ### Core Concepts - [[knowledge_base/cognitive/active_inference|Active Inference]] - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - [[knowledge_base/cognitive/emergence_self_organization|Emergence and Self-Organization]] ### Mathematical Foundation ```python def compute_expected_free_energy(beliefs, policies): """ Compute expected free energy for policy evaluation. Args: beliefs: Current belief state about environment policies: Available action policies Returns: Expected free energy for each policy """ pragmatic_value = compute_pragmatic_value(beliefs, policies) epistemic_value = compute_epistemic_value(beliefs, policies) return pragmatic_value + epistemic_value ``` ## Methodology ### Experimental Design 1. Implementation of individual ant agents using active inference 2. Environment design with pheromone trails and food sources 3. Collective behavior emergence through local interactions 4. Analysis of path optimization and foraging efficiency ### Implementation ```python class Nestmate: """ Individual ant agent using active inference. Attributes: position: Current position in environment beliefs: Beliefs about environment state policies: Available action policies """ def __init__(self, config): """Initialize agent with configuration.""" self.position = Position(x, y, theta) self.beliefs = initialize_beliefs() self.policies = generate_policies() def update(self, dt, world_state): """Update agent state and take action.""" # Update beliefs based on observations observation = self.observe(world_state) self.update_beliefs(observation) # Select and execute action action = self.select_action() self.execute_action(action, dt) def update_beliefs(self, observation): """Update beliefs using variational inference.""" pass def select_action(self): """Select action using expected free energy.""" G = compute_expected_free_energy(self.beliefs, self.policies) return select_policy(G) ``` ### Validation Methods - Path efficiency metrics - Food collection rate - Emergence of optimal trails - Collective behavior analysis ## Results ### Data Analysis ```python def analyze_colony_behavior(simulation_data): """ Analyze collective behavior patterns. Args: simulation_data: Recorded simulation data Returns: Analysis metrics and visualizations """ # Compute path optimization metrics path_efficiency = compute_path_efficiency(simulation_data) # Analyze pheromone trail formation trail_formation = analyze_trail_formation(simulation_data) # Measure food collection efficiency foraging_efficiency = compute_foraging_efficiency(simulation_data) return { 'path_efficiency': path_efficiency, 'trail_formation': trail_formation, 'foraging_efficiency': foraging_efficiency } ``` ### Key Findings 1. Active inference enables efficient path optimization 2. Emergent trail patterns match biological observations 3. Collective behavior emerges from individual inference ### Visualizations ```python def visualize_results(results): """Create visualizations of colony behavior.""" plt.figure(figsize=(12, 8)) # Plot pheromone trails plt.subplot(221) plot_pheromone_trails(results) # Plot path efficiency plt.subplot(222) plot_path_efficiency(results) # Plot food collection plt.subplot(223) plot_food_collection(results) plt.tight_layout() plt.show() ``` ## Discussion ### Interpretation - Active inference provides a principled explanation for ant behavior - Local inference leads to global optimization - Pheromone trails serve as external memory ### Implications 1. New insights into biological systems 2. Improved swarm robotics algorithms 3. Applications to distributed optimization ### Limitations - Computational complexity scaling - Simplified environment model - Limited agent capabilities ## Implementation Details ### Environment Setup ```bash # Setup virtual environment python -m venv env source env/bin/activate # Install dependencies pip install -r requirements.txt ``` ### Dependencies ```python import numpy as np import torch import matplotlib.pyplot as plt from dataclasses import dataclass from typing import List, Dict ``` ### Configuration ```yaml simulation: max_steps: 10000 timestep: 0.1 random_seed: 42 environment: size: [100, 100] food_sources: 5 obstacles: 10 agent: sensor_range: 5 movement_speed: 1 rotation_speed: 0.5 ``` ## Reproducibility ### Code Repository - Repository: cognitive/Things/Ant_Colony - Main simulation: simulation.py - Agent implementation: agents/nestmate.py ### Data - Simulation recordings - Analysis results - Visualization data ### Environment - Python 3.8+ - NumPy, PyTorch - Matplotlib for visualization ## Extensions ### Future Work 1. Hierarchical active inference models 2. Multi-colony interactions 3. Dynamic environment adaptation ### Open Questions - Optimal balance of exploration/exploitation - Scaling to larger colonies - Transfer to robotic systems ## References ### Academic References 1. Friston, K. "The free-energy principle: a unified brain theory?" 2. Deneubourg, J.L. "The Self-Organizing Exploratory Pattern of the Argentine Ant" 3. Ramstead, M.J.D. "A tale of two densities: active inference is enactive inference" ### Code References - [[Things/Ant_Colony/simulation.py|Main Simulation]] - [[Things/Ant_Colony/agents/nestmate.py|Agent Implementation]] - [[Things/Ant_Colony/visualization/renderer.py|Visualization]] ### Documentation - [[docs/guides/ant_colony_guide|Implementation Guide]] - [[docs/api/ant_colony_api|API Reference]] - [[docs/examples/ant_colony_example|Usage Example]] ## Related Research ### Prerequisites - [[research/active_inference_foundations|Active Inference Foundations]] - [[research/collective_behavior_basics|Collective Behavior Basics]] ### Follow-up Work - [[research/hierarchical_swarms|Hierarchical Swarm Behavior]] - [[research/multi_colony_systems|Multi-Colony Systems]]