# Category Theory in Cognitive Modeling --- title: Category Theory type: mathematical_concept status: stable created: 2024-02-06 tags: - mathematics - category-theory - functors - natural-transformations - cognitive-modeling semantic_relations: - type: implements links: - [[../cognitive/active_inference|Active Inference]] - [[../cognitive/free_energy_principle|Free Energy Principle]] - type: uses links: - [[algebraic_topology]] - [[information_geometry]] - type: documented_by links: - [[../../docs/guides/implementation_guides|Implementation Guides]] - [[../../docs/api/api_documentation|API Documentation]] --- ## Overview Category theory provides a unifying mathematical framework for understanding cognitive systems through abstract structures and their relationships. This document explores how categorical methods illuminate cognitive architectures, learning processes, and inference mechanisms. ## Core Concepts ### Categories ```python class Category: """ Abstract category implementation. Properties: - Objects: Collection of objects - Morphisms: Arrows between objects - Composition: Morphism composition - Identity: Identity morphisms """ def __init__(self): self.objects = set() self.morphisms = dict() self.compositions = dict() def compose(self, f: Morphism, g: Morphism) -> Morphism: """Compose morphisms ensuring domain/codomain match.""" assert f.domain == g.codomain, "Morphisms not composable" return self.compositions[(f, g)] def identity(self, obj: Object) -> Morphism: """Get identity morphism for object.""" return self.morphisms[obj, obj] ``` ### Functors ```python class Functor: """ Structure-preserving map between categories. Properties: - Object mapping - Morphism mapping - Preserves composition - Preserves identities """ def __init__(self, source: Category, target: Category): self.source = source self.target = target self.object_map = dict() self.morphism_map = dict() def map_object(self, obj: Object) -> Object: """Map object from source to target category.""" return self.object_map[obj] def map_morphism(self, morph: Morphism) -> Morphism: """Map morphism preserving structure.""" return self.morphism_map[morph] ``` ## Cognitive Applications ### Belief Categories ```python class BeliefCategory(Category): """ Category of belief states and updates. Objects: - Belief distributions - State spaces - Observation spaces Morphisms: - Belief updates - State transitions - Observation mappings """ def belief_update(self, prior: Distribution, likelihood: ConditionalDistribution) -> Distribution: """Update belief using Bayesian morphism.""" return self.compose(likelihood, prior) def state_transition(self, current: State, action: Action) -> State: """Transition between states via action morphism.""" return self.morphisms[(current, action)] ``` ### Free Energy Functors ```python class FreeEnergyFunctor(Functor): """ Functor mapping between belief and free energy categories. Maps: - Beliefs to free energies - Updates to gradients - Compositions to optimization steps """ def compute_free_energy(self, belief: Distribution) -> float: """Map belief to its free energy.""" return self.map_object(belief).evaluate() def compute_gradient(self, update: Morphism) -> Gradient: """Map update to free energy gradient.""" return self.map_morphism(update).gradient() ``` ### Learning Functors ```python class LearningFunctor(Functor): """ Functor capturing learning processes. Maps: - Parameter spaces to model spaces - Updates to learning steps - Compositions to learning trajectories """ def learn_parameters(self, data: Dataset, model: Model) -> Parameters: """Learn parameters through functorial mapping.""" learning_morphism = self.get_learning_morphism(model) return self.map_morphism(learning_morphism)(data) ``` ## Mathematical Structures ### Monoidal Categories ```python class MonoidalCategory(Category): """ Monoidal category with tensor products. Properties: - Tensor product ⊗ - Unit object I - Associator (A ⊗ B) ⊗ C ≅ A ⊗ (B ⊗ C) - Left/right unitors I ⊗ A ≅ A ≅ A ⊗ I """ def __init__(self): super().__init__() self.unit = None self.associators = {} self.left_unitors = {} self.right_unitors = {} def tensor(self, A: Object, B: Object) -> Object: """Tensor product of objects.""" return self._compute_tensor(A, B) def tensor_morphism(self, f: Morphism, g: Morphism) -> Morphism: """Tensor product of morphisms.""" return self._compute_tensor_morphism(f, g) def associator(self, A: Object, B: Object, C: Object) -> Morphism: """Natural isomorphism for associativity.""" key = (A, B, C) if key not in self.associators: self.associators[key] = self._compute_associator(*key) return self.associators[key] ``` ### Enriched Categories ```python class EnrichedCategory: """ Category enriched over a monoidal category. Properties: - Hom-objects in enriching category - Enriched composition - Enriched identities """ def __init__(self, base: Category, enriching: MonoidalCategory): self.base = base self.V = enriching self.hom_objects = {} self.compositions = {} def hom(self, A: Object, B: Object) -> Object: """Hom-object in enriching category.""" key = (A, B) if key not in self.hom_objects: self.hom_objects[key] = self._compute_hom(*key) return self.hom_objects[key] def enriched_compose(self, hom_AB: Object, hom_BC: Object) -> Morphism: """Enriched composition morphism.""" return self.compositions.get( (hom_AB, hom_BC), self._compute_composition(hom_AB, hom_BC) ) ``` ### Natural Transformations ```python class NaturalTransformation: """ Natural transformation between functors. Properties: - Components for each object - Naturality squares - Vertical composition - Horizontal composition """ def __init__(self, source: Functor, target: Functor): self.F = source self.G = target self.components = {} def component(self, A: Object) -> Morphism: """Component at object A.""" if A not in self.components: self.components[A] = self._compute_component(A) return self.components[A] def verify_naturality(self, f: Morphism) -> bool: """Verify naturality condition for morphism.""" dom, cod = f.domain, f.codomain square = { 'top': self.F.map_morphism(f), 'bottom': self.G.map_morphism(f), 'left': self.component(dom), 'right': self.component(cod) } return self._check_square_commutes(square) ``` ## Advanced Integration ### Information Geometry Connection ```python class InformationGeometricCategory(EnrichedCategory): """ Category enriched over statistical manifolds. Integration: - [[information_geometry|Information Geometry]] - [[differential_geometry|Differential Geometry]] - [[statistical_manifolds|Statistical Manifolds]] """ def __init__(self): super().__init__( base=StatisticalManifold(), enriching=RiemannianCategory() ) def fisher_metric(self, distribution: Object) -> Morphism: """Fisher information metric as enriched hom-object.""" return self.hom(distribution, distribution) def natural_gradient(self, tangent_vector: Morphism) -> Morphism: """Natural gradient using Fisher metric.""" return self._compute_natural_gradient(tangent_vector) ``` ### Free Energy Integration ```python class FreeEnergyCategory(MonoidalCategory): """ Category for free energy principles. Integration: - [[variational_methods|Variational Methods]] - [[optimal_control|Optimal Control]] - [[information_theory|Information Theory]] """ def __init__(self): super().__init__() self.variational_functor = VariationalFunctor(self) self.control_functor = ControlFunctor(self) def expected_free_energy(self, policy: Morphism) -> float: """Compute expected free energy of policy.""" return self._compute_efe(policy) def optimize_policy(self, initial: Object, target: Object) -> Morphism: """Optimize policy using free energy.""" return self._optimize_using_efe(initial, target) ``` ### Probabilistic Integration ```python class BayesianCategory(EnrichedCategory): """ Category for Bayesian inference. Integration: - [[probability_theory|Probability Theory]] - [[measure_theory|Measure Theory]] - [[bayesian_inference|Bayesian Inference]] """ def __init__(self): super().__init__( base=ProbabilitySpace(), enriching=MeasureCategory() ) def posterior(self, prior: Object, likelihood: Morphism) -> Object: """Compute posterior using enriched composition.""" return self.enriched_compose(prior, likelihood) def evidence(self, model: Object, data: Object) -> float: """Compute model evidence.""" return self._compute_evidence(model, data) ``` ### Differential Geometric Connection ```python class DifferentialGeometricCategory(EnrichedCategory): """ Category enriched over differential manifolds. Integration: - [[differential_geometry|Differential Geometry]] - [[lie_theory|Lie Theory]] - [[symplectic_geometry|Symplectic Geometry]] Mathematical Structure: - Base category: Smooth manifolds and smooth maps - Enriching category: Tangent bundles with vector operations - Hom-objects: Spaces of smooth maps with smooth topology """ def __init__(self): super().__init__( base=SmoothManifoldCategory(), enriching=TangentBundleCategory() ) self.connection = LeviCivitaConnection() self.metric = RiemannianMetric() def parallel_transport(self, vector: Morphism, path: Morphism) -> Morphism: """Parallel transport along path using connection.""" return self.connection.transport(vector, path) def geodesic(self, point: Object, vector: Morphism) -> Morphism: """Compute geodesic from point in direction.""" return self.connection.exponential_map(point, vector) def curvature(self, X: Morphism, Y: Morphism) -> Morphism: """Compute Riemann curvature tensor.""" return self.connection.curvature_tensor(X, Y) ``` ### Algebraic Topology Connection ```python class HomologicalCategory(Category): """ Category for homological algebra and persistence. Integration: - [[algebraic_topology|Algebraic Topology]] - [[homological_algebra|Homological Algebra]] - [[persistent_homology|Persistent Homology]] Mathematical Structure: - Chain complexes as objects - Chain maps as morphisms - Homology functors - Persistence diagrams """ def __init__(self): super().__init__() self.chain_complex = ChainComplex() self.persistence = PersistenceDiagram() def compute_homology(self, complex: Object, dimension: int) -> Object: """Compute n-th homology group.""" return self.chain_complex.homology(complex, dimension) def persistence_diagram(self, filtration: Morphism) -> Object: """Compute persistence diagram of filtration.""" return self.persistence.compute(filtration) def spectral_sequence(self, filtration: Morphism) -> Object: """Compute spectral sequence.""" return self.chain_complex.spectral_sequence(filtration) ``` ### Lie Theory Connection ```python class LieTheoreticCategory(MonoidalCategory): """ Category incorporating Lie theory structures. Integration: - [[lie_theory|Lie Theory]] - [[representation_theory|Representation Theory]] - [[harmonic_analysis|Harmonic Analysis]] Mathematical Structure: - Lie groups and algebras as objects - Lie group homomorphisms as morphisms - Adjoint representations - Exponential maps """ def __init__(self): super().__init__() self.lie_algebra = LieAlgebra() self.representations = RepresentationSpace() def exponential_map(self, X: Object) -> Morphism: """Compute Lie group exponential map.""" return self.lie_algebra.exponential(X) def adjoint_representation(self, g: Object) -> Morphism: """Compute adjoint representation.""" return self.representations.adjoint(g) def killing_form(self, X: Object, Y: Object) -> float: """Compute Killing form.""" return self.lie_algebra.killing_form(X, Y) ``` ## Advanced Structures ### Higher Categories ```python class HigherCategory: """ Implementation of higher categorical structures. Mathematical Structure: - n-morphisms (n > 1) - Vertical and horizontal composition - Interchange law - Coherence conditions Applications: - Multi-level cognitive hierarchies - Complex transformation networks - Higher-order learning processes """ def __init__(self, dimension: int): self.dimension = dimension self.morphisms = {i: {} for i in range(dimension + 1)} self.compositions = {i: {} for i in range(dimension + 1)} def n_morphism(self, level: int, source: Object, target: Object) -> Morphism: """Get n-morphism between objects.""" return self.morphisms[level].get((source, target)) def vertical_compose(self, level: int, f: Morphism, g: Morphism) -> Morphism: """Vertical composition of n-morphisms.""" return self.compositions[level].get((f, g)) def horizontal_compose(self, level: int, f: Morphism, g: Morphism) -> Morphism: """Horizontal composition with interchange law.""" return self._compute_horizontal_composition(level, f, g) ``` ### Enriched Functors ```python class EnrichedFunctor: """ Functors between enriched categories. Mathematical Structure: - Base functor between underlying categories - Enriched structure preservation - Strength conditions - Coherence axioms Applications: - Structure-preserving mappings between cognitive models - Enriched learning processes - Multi-modal information processing """ def __init__(self, source: EnrichedCategory, target: EnrichedCategory): self.source = source self.target = target self.base_functor = self._construct_base_functor() self.strength = self._construct_strength() def map_hom_object(self, hom_AB: Object) -> Object: """Map hom-object preserving enriched structure.""" return self._compute_enriched_mapping(hom_AB) def preserve_composition(self, comp: Morphism) -> Morphism: """Preserve enriched composition.""" return self._compute_composition_preservation(comp) def verify_coherence(self) -> bool: """Verify coherence conditions.""" return self._check_coherence_conditions() ``` ### Monoidal Transformations ```python class MonoidalTransformation: """ Natural transformations between monoidal functors. Mathematical Structure: - Component morphisms - Monoidal structure preservation - Coherence with tensor products - Unit preservation Applications: - Transformations between cognitive architectures - Learning model adaptations - Structural modifications """ def __init__(self, source: MonoidalFunctor, target: MonoidalFunctor): self.source = source self.target = target self.components = {} self.monoidal_components = {} def monoidal_component(self, A: Object, B: Object) -> Morphism: """Get monoidal component at objects.""" key = (A, B) if key not in self.monoidal_components: self.monoidal_components[key] = self._compute_monoidal_component(*key) return self.monoidal_components[key] def verify_coherence(self) -> bool: """Verify monoidal coherence conditions.""" return all([ self._check_tensor_coherence(), self._check_unit_coherence(), self._check_associativity_coherence() ]) ``` ## Applications ### Active Inference - **Belief Categories**: State and observation spaces - **Update Functors**: Inference processes - **Action Categories**: Policy spaces ### Learning Theory - **Parameter Categories**: Model spaces - **Learning Functors**: Training processes - **Gradient Categories**: Optimization spaces ### Neural Networks - **Layer Categories**: Network architectures - **Training Functors**: Learning algorithms - **Activation Categories**: Nonlinearity spaces ## Integration Points ### Theory Integration - [[../cognitive/active_inference|Active Inference]] - [[../cognitive/free_energy_principle|Free Energy Principle]] - [[information_geometry|Information Geometry]] ### Implementation Integration - [[../../docs/guides/implementation_patterns|Implementation Patterns]] - [[../../docs/api/api_documentation|API Documentation]] - [[../../docs/examples/usage_examples|Usage Examples]] ## References - [[awodey_2010]] - Category Theory - [[baez_stay_2011]] - Physics, Topology, Logic and Computation - [[spivak_2014]] - Category Theory for Scientists - [[fong_spivak_2019]] - An Invitation to Applied Category Theory