# Model Implementation Guide --- title: Model Implementation Guide type: guide status: stable created: 2024-02-06 tags: - implementation - models - development - architecture semantic_relations: - type: implements links: - [[knowledge_base/cognitive/active_inference|Active Inference]] - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - type: relates links: - [[docs/guides/implementation_patterns|Implementation Patterns]] - [[docs/api/api_reference|API Reference]] --- ## Overview This guide provides detailed instructions for implementing cognitive models based on the Active Inference framework. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on practical implementation steps. ## Model Architecture ### Core Components ```python # @model_architecture class CognitiveModel: """ Core cognitive model implementation. Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]] Patterns: [[docs/guides/implementation_patterns#core-implementation-patterns|Implementation Patterns]] """ def __init__(self): # Initialize core components self.belief_model = BeliefModel() # [[belief_updating]] self.policy_model = PolicyModel() # [[action_selection]] self.perception_model = PerceptionModel() # [[perception_system]] # Initialize state self.initialize_state() ``` ### State Management ```python # @state_management def initialize_state(self): """ Initialize model state. Theory: [[knowledge_base/cognitive/predictive_processing#state-initialization|State Initialization]] Implementation: [[docs/guides/implementation_patterns#state-management|State Management]] """ # Initialize belief states self.beliefs = self._initialize_beliefs() # Initialize action states self.policies = self._initialize_policies() # Initialize perception states self.perception = self._initialize_perception() ``` ## Implementation Steps ### 1. Belief System Implementation ```python # @belief_implementation class BeliefModel: """ Belief system implementation. Theory: - [[knowledge_base/cognitive/predictive_processing#belief-system|Belief System]] - [[knowledge_base/cognitive/free_energy_principle#belief-dynamics|Belief Dynamics]] Mathematics: - [[knowledge_base/mathematics/bayesian_inference|Bayesian Inference]] - [[knowledge_base/mathematics/variational_methods|Variational Methods]] API: [[docs/api/api_reference#belief-updating-system|Belief Updating API]] """ def update_beliefs(self, observation: Observation) -> BeliefState: """ Update beliefs based on observation. Theory: - [[knowledge_base/cognitive/free_energy_principle#belief-updating|Belief Updating]] - [[knowledge_base/cognitive/predictive_processing#prediction-error|Prediction Error]] Mathematics: - [[knowledge_base/mathematics/message_passing|Message Passing]] - [[knowledge_base/mathematics/gradient_descent|Gradient Descent]] Implementation: - [[docs/api/matrix_operations#belief-update|Belief Update Operations]] - [[docs/api/optimization_methods#belief-optimization|Belief Optimization]] """ # Compute prediction error using precision-weighted differences prediction_error = self._compute_prediction_error( observation, method="precision_weighted" # [[knowledge_base/mathematics/precision_weighting]] ) # Update beliefs using gradient descent on free energy updated_beliefs = self._minimize_free_energy( prediction_error, optimizer="natural_gradient" # [[knowledge_base/mathematics/natural_gradients]] ) return updated_beliefs ``` ### 2. Policy Implementation ```python # @policy_implementation class PolicyModel: """ Policy selection implementation. Theory: - [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]] - [[knowledge_base/cognitive/free_energy_principle#action-selection|Action Selection]] Mathematics: - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]] - [[knowledge_base/mathematics/information_theory|Information Theory]] API: [[docs/api/api_reference#policy-selection|Policy Selection API]] """ def select_policy(self, beliefs: BeliefState) -> Policy: """ Select optimal policy. Theory: - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]] - [[knowledge_base/cognitive/active_inference#policy-optimization|Policy Optimization]] Mathematics: - [[knowledge_base/mathematics/path_integral|Path Integral Control]] - [[knowledge_base/mathematics/softmax|Softmax Selection]] Implementation: - [[docs/api/optimization_methods#policy-selection|Policy Selection]] - [[docs/api/probability_utils#softmax|Softmax Implementation]] """ # Generate policies using path integral sampling policies = self._generate_policies( method="path_integral" # [[knowledge_base/mathematics/path_sampling]] ) # Evaluate expected free energy policy_values = self._evaluate_policies( policies, method="expected_free_energy" # [[knowledge_base/mathematics/expected_free_energy]] ) # Select using precision-weighted softmax optimal_policy = self._select_optimal_policy( policy_values, method="precision_softmax" # [[knowledge_base/mathematics/precision_weighted_selection]] ) return optimal_policy ``` ### 3. Perception Implementation ```python # @perception_implementation class PerceptionModel: """ Perception system implementation. Theory: - [[knowledge_base/cognitive/predictive_processing#perception|Perception]] - [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]] Mathematics: - [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]] - [[knowledge_base/mathematics/message_passing|Message Passing]] API: [[docs/api/api_reference#perception-system|Perception API]] """ def process_observation(self, sensory_input: Input) -> Observation: """ Process sensory input. Theory: - [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]] - [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]] Mathematics: - [[knowledge_base/mathematics/error_propagation|Error Propagation]] - [[knowledge_base/mathematics/precision_weighting|Precision Weighting]] Implementation: - [[docs/api/matrix_operations#error-computation|Error Computation]] - [[docs/api/probability_utils#precision-scaling|Precision Scaling]] """ # Preprocess input using hierarchical processing processed_input = self._preprocess_input( sensory_input, method="hierarchical" # [[knowledge_base/mathematics/hierarchical_processing]] ) # Generate predictions using generative model predictions = self._generate_predictions( method="top_down" # [[knowledge_base/cognitive/predictive_processing#top-down-predictions]] ) # Compare with predictions using precision-weighted errors observation = self._compare_with_predictions( processed_input, predictions, method="precision_weighted" # [[knowledge_base/mathematics/precision_weighting]] ) return observation ``` ## Integration Guidelines ### 1. Component Integration ```python # @component_integration def integrate_components(self): """ Integrate model components. See [[docs/guides/system_integration|System Integration]] """ # Connect belief system self._connect_belief_system() # Connect policy system self._connect_policy_system() # Connect perception system self._connect_perception_system() ``` ### 2. Data Flow ```python # @data_flow def process_cycle(self, input_data: Input) -> Action: """ Process single cognitive cycle. Theory: [[knowledge_base/cognitive/active_inference#cognitive-cycle|Cognitive Cycle]] """ # Process perception observation = self.perception_model.process_observation(input_data) # Update beliefs beliefs = self.belief_model.update_beliefs(observation) # Select policy policy = self.policy_model.select_policy(beliefs) # Get action action = policy.get_action() return action ``` ## Validation Framework ### 1. Model Validation ```python # @model_validation def validate_model(self) -> ValidationResult: """ Validate model implementation. See [[docs/guides/validation_guide|Validation Guide]] """ # Validate components component_validation = self._validate_components() # Validate integration integration_validation = self._validate_integration() # Validate behavior behavior_validation = self._validate_behavior() return ValidationResult( component_validation, integration_validation, behavior_validation ) ``` ### 2. Testing Framework ```python # @testing_framework def test_model(self) -> TestResults: """ Test model implementation. See [[docs/guides/testing_guide|Testing Guide]] """ # Run unit tests unit_results = self._run_unit_tests() # Run integration tests integration_results = self._run_integration_tests() # Run system tests system_results = self._run_system_tests() return TestResults( unit_results, integration_results, system_results ) ``` ## Best Practices ### 1. Implementation Guidelines - Follow [[docs/guides/implementation_patterns|Implementation Patterns]] - Use [[docs/guides/code_organization|Code Organization]] - Apply [[docs/guides/documentation_standards|Documentation Standards]] ### 2. Performance Optimization - Implement [[docs/guides/performance_optimization|Optimization Guidelines]] - Monitor [[docs/guides/performance_metrics|Performance Metrics]] - Profile using [[docs/guides/profiling_guide|Profiling Guide]] ### 3. Quality Assurance - Follow [[docs/guides/testing_guide|Testing Guidelines]] - Use [[docs/guides/validation_framework|Validation Framework]] - Review with [[docs/guides/code_review|Code Review Process]] ## Related Documentation - [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]] - [[docs/api/api_reference|API Reference]] - [[docs/guides/implementation_patterns|Implementation Patterns]] - [[docs/guides/system_integration|System Integration]] ## References - [[knowledge_base/cognitive/active_inference|Active Inference]] - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]] - [[docs/concepts/theoretical_foundations|Theoretical Foundations]]