--- title: Validation Framework type: guide status: draft created: 2024-02-12 tags: - validation - quality - testing semantic_relations: - type: implements links: [[ai_validation_framework]] - type: relates links: - [[unit_testing]] - [[quality_metrics]] --- # Validation Framework ## Overview This guide outlines the validation framework used to ensure theoretical consistency, implementation correctness, and quality standards across the cognitive modeling system. ## Validation Layers ### 1. Theoretical Validation - Mathematical consistency - Theoretical soundness - Formal proofs - Constraint satisfaction ### 2. Implementation Validation - Code correctness - Algorithm implementation - Numerical stability - Performance optimization ### 3. Empirical Validation - Experimental results - Benchmark comparisons - Real-world testing - Performance metrics ## Validation Methods ### Mathematical Validation ```python def validate_probability_distribution(distribution): """Validate probability distribution properties.""" # Check normalization assert np.isclose(distribution.sum(), 1.0) # Check non-negativity assert np.all(distribution >= 0) # Check numerical stability assert np.all(np.isfinite(distribution)) ``` ### Implementation Validation ```python def validate_model_implementation(model): """Validate model implementation.""" # Check interface compliance validate_interface(model) # Verify state consistency validate_state(model) # Test core functionality validate_behavior(model) ``` ### Empirical Validation ```python def validate_model_performance(model, benchmark_data): """Validate model performance.""" # Run benchmark tests results = run_benchmarks(model, benchmark_data) # Compare against baselines validate_metrics(results, benchmarks) # Check performance criteria validate_performance(results) ``` ## Validation Workflow ### 1. Pre-implementation - Review theoretical foundations - Verify mathematical proofs - Check assumptions - Plan validation tests ### 2. During Implementation - Unit testing - Integration testing - Property testing - Performance profiling ### 3. Post-implementation - System validation - Benchmark testing - Documentation review - Code review ## Validation Tools ### Static Analysis - Type checking - Code linting - Complexity analysis - Dependency validation ### Dynamic Analysis - Runtime monitoring - Memory profiling - Performance tracking - Coverage analysis ### Quality Metrics - Code quality - Test coverage - Documentation completeness - Performance benchmarks ## Best Practices ### Documentation - Document assumptions - Specify constraints - Detail validation methods - Record test cases ### Testing - Comprehensive test suite - Edge case coverage - Performance benchmarks - Integration tests ### Review Process - Code review - Theory review - Documentation review - Performance review ## Validation Checklist ### Theory - [ ] Mathematical consistency - [ ] Theoretical soundness - [ ] Constraint satisfaction - [ ] Edge case handling ### Implementation - [ ] Code correctness - [ ] Algorithm accuracy - [ ] Numerical stability - [ ] Performance optimization ### Testing - [ ] Unit tests - [ ] Integration tests - [ ] Benchmark tests - [ ] Performance tests ## Related Documentation - [[unit_testing]] - [[quality_metrics]] - [[ai_validation_framework]]