# Implementation Patterns Guide --- title: Implementation Patterns Guide type: guide status: stable created: 2024-02-06 tags: - implementation - patterns - design - architecture semantic_relations: - type: implements links: - [[knowledge_base/cognitive/active_inference|Active Inference]] - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - type: relates links: - [[docs/api/api_reference|API Reference]] - [[docs/concepts/theoretical_foundations|Theoretical Foundations]] --- ## Overview This guide outlines implementation patterns for translating cognitive science theory into practical code. While the [[knowledge_base/cognitive/cognitive_science|knowledge base]] provides theoretical foundations, this guide focuses on concrete implementation strategies. ## Core Implementation Patterns ### Active Inference Implementation ```python # @active_inference_pattern class ActiveInferencePattern: """ Core implementation pattern for Active Inference. Theory: [[knowledge_base/cognitive/active_inference|Active Inference]] API: [[docs/api/api_reference#active-inference-framework|API Reference]] """ def __init__(self): self.belief_updater = BeliefUpdater() # [[belief_updating]] self.policy_selector = PolicySelector() # [[action_selection]] self.state_estimator = StateEstimator() # [[state_estimation]] def cycle(self, observation: Observation) -> Action: """ Single cycle of perception-action. Theory: [[knowledge_base/cognitive/active_inference#perception-action-cycle|Perception-Action Cycle]] """ # Update beliefs beliefs = self.belief_updater.update(observation) # Select policy policy = self.policy_selector.select(beliefs) # Execute action action = policy.get_action() return action ``` ### Belief Updating Pattern ```python # @belief_updating_pattern class BeliefUpdatePattern: """ Implementation pattern for belief updating. Theory: - [[knowledge_base/cognitive/predictive_processing#belief-updating|Belief Updating]] - [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]] Mathematics: - [[knowledge_base/mathematics/variational_methods|Variational Methods]] - [[knowledge_base/mathematics/information_geometry|Information Geometry]] API: [[docs/api/api_reference#belief-updating-system|API Reference]] """ def update_beliefs(self, prior: Distribution, likelihood: Distribution) -> Distribution: """ Update beliefs using variational inference. Theory: - [[knowledge_base/cognitive/free_energy_principle#variational-inference|Variational Inference]] - [[knowledge_base/mathematics/kullback_leibler|KL Divergence]] Implementation: - [[docs/api/matrix_operations#gradient-descent|Gradient Descent]] - [[docs/api/optimization_methods#natural-gradients|Natural Gradients]] """ # Compute posterior using variational methods posterior = self._compute_posterior(prior, likelihood) # Minimize free energy using natural gradients optimized = self._minimize_free_energy(posterior) return optimized def _compute_posterior(self, prior: Distribution, likelihood: Distribution) -> Distribution: """ Compute posterior distribution. Mathematics: - [[knowledge_base/mathematics/bayes_theorem|Bayes Theorem]] - [[knowledge_base/mathematics/exponential_families|Exponential Families]] Implementation: - [[docs/api/probability_utils#distribution-ops|Distribution Operations]] """ pass def _minimize_free_energy(self, posterior: Distribution) -> Distribution: """ Minimize variational free energy. Mathematics: - [[knowledge_base/mathematics/variational_calculus|Variational Calculus]] - [[knowledge_base/mathematics/optimization_theory|Optimization Theory]] Implementation: - [[docs/api/optimization_methods#variational-optimization|Variational Optimization]] """ pass ``` ### Policy Selection Pattern ```python # @policy_selection_pattern class PolicySelectionPattern: """ Implementation pattern for policy selection. Theory: - [[knowledge_base/cognitive/active_inference#policy-selection|Policy Selection]] - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]] Mathematics: - [[knowledge_base/mathematics/information_theory|Information Theory]] - [[knowledge_base/mathematics/decision_theory|Decision Theory]] API: [[docs/api/api_reference#policy-selection|Policy Selection API]] """ def select_policy(self, beliefs: BeliefState, policies: List[Policy]) -> Policy: """ Select optimal policy using expected free energy. Theory: - [[knowledge_base/cognitive/free_energy_principle#expected-free-energy|Expected Free Energy]] - [[knowledge_base/cognitive/active_inference#action-selection|Action Selection]] Mathematics: - [[knowledge_base/mathematics/expected_utility|Expected Utility]] - [[knowledge_base/mathematics/information_gain|Information Gain]] Implementation: - [[docs/api/optimization_methods#policy-optimization|Policy Optimization]] """ # Generate and evaluate policies policies = self._generate_policies() policy_values = self._evaluate_policies(policies, beliefs) # Select optimal policy using softmax optimal_policy = self._select_optimal_policy(policy_values) return optimal_policy def _evaluate_policies(self, policies: List[Policy], beliefs: BeliefState) -> np.ndarray: """ Evaluate policies using expected free energy. Mathematics: - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]] - [[knowledge_base/mathematics/path_integral|Path Integral]] Implementation: - [[docs/api/matrix_operations#policy-evaluation|Policy Evaluation]] """ pass def _select_optimal_policy(self, policy_values: np.ndarray) -> Policy: """ Select optimal policy using softmax. Mathematics: - [[knowledge_base/mathematics/softmax|Softmax Function]] - [[knowledge_base/mathematics/temperature_scaling|Temperature Scaling]] Implementation: - [[docs/api/probability_utils#softmax|Softmax Implementation]] """ pass ``` ### Perception Implementation Pattern ```python # @perception_pattern class PerceptionPattern: """ Implementation pattern for perceptual processing. Theory: - [[knowledge_base/cognitive/predictive_processing#perception|Predictive Processing]] - [[knowledge_base/cognitive/free_energy_principle#perceptual-inference|Perceptual Inference]] Mathematics: - [[knowledge_base/mathematics/hierarchical_models|Hierarchical Models]] - [[knowledge_base/mathematics/message_passing|Message Passing]] API: [[docs/api/api_reference#perception-system|Perception API]] """ def process_input(self, sensory_input: Input, prior_beliefs: BeliefState) -> Observation: """ Process sensory input using predictive processing. Theory: - [[knowledge_base/cognitive/predictive_processing#sensory-processing|Sensory Processing]] - [[knowledge_base/cognitive/active_inference#perception|Active Inference Perception]] Mathematics: - [[knowledge_base/mathematics/prediction_error|Prediction Error]] - [[knowledge_base/mathematics/precision_weighting|Precision Weighting]] Implementation: - [[docs/api/matrix_operations#error-computation|Error Computation]] - [[docs/api/probability_utils#precision-scaling|Precision Scaling]] """ # Compute prediction errors prediction_errors = self._compute_prediction_errors( sensory_input, prior_beliefs ) # Weight by precision weighted_errors = self._weight_by_precision(prediction_errors) # Update beliefs updated_beliefs = self._update_beliefs(weighted_errors) return updated_beliefs def _compute_prediction_errors(self, sensory_input: Input, predictions: Predictions) -> PredictionErrors: """ Compute hierarchical prediction errors. Mathematics: - [[knowledge_base/mathematics/error_propagation|Error Propagation]] - [[knowledge_base/mathematics/hierarchical_inference|Hierarchical Inference]] Implementation: - [[docs/api/matrix_operations#error-propagation|Error Propagation]] """ pass def _weight_by_precision(self, prediction_errors: PredictionErrors) -> WeightedErrors: """ Weight prediction errors by precision. Mathematics: - [[knowledge_base/mathematics/precision_matrices|Precision Matrices]] - [[knowledge_base/mathematics/uncertainty_propagation|Uncertainty Propagation]] Implementation: - [[docs/api/matrix_operations#precision-weighting|Precision Weighting]] """ pass ``` ## Design Patterns ### 1. Model-View-Controller ```python # @mvc_pattern class ModelPattern: """ MVC pattern for cognitive models. Theory: [[knowledge_base/cognitive/cognitive_phenomena#model-architecture|Model Architecture]] """ def __init__(self): self.model = GenerativeModel() # Internal model self.view = ModelView() # Visualization self.controller = ModelController() # Control logic ``` ### 2. Observer Pattern ```python # @observer_pattern class BeliefObserver: """ Observer pattern for belief monitoring. Theory: [[knowledge_base/cognitive/predictive_processing#belief-monitoring|Belief Monitoring]] """ def update(self, beliefs: BeliefState): """Update on belief changes.""" self._log_beliefs(beliefs) self._visualize_beliefs(beliefs) ``` ## Integration Patterns ### 1. Component Integration ```python # @integration_pattern class IntegrationPattern: """ Pattern for component integration. See [[docs/guides/system_integration|System Integration]] """ def __init__(self): self.belief_component = BeliefComponent() self.action_component = ActionComponent() self.perception_component = PerceptionComponent() ``` ### 2. Pipeline Pattern ```python # @pipeline_pattern class ProcessingPipeline: """ Pattern for information processing pipeline. Theory: [[knowledge_base/cognitive/predictive_processing#processing-hierarchy|Processing Hierarchy]] """ def process(self, input_data: Data) -> Result: """Process data through pipeline stages.""" preprocessed = self._preprocess(input_data) processed = self._process(preprocessed) postprocessed = self._postprocess(processed) return postprocessed ``` ## Validation Patterns ### 1. Model Validation ```python # @validation_pattern class ValidationPattern: """ Pattern for model validation. See [[docs/guides/validation_guide|Validation Guide]] """ def validate_model(self, model: Model) -> ValidationResult: """Validate model components and behavior.""" structure_valid = self._validate_structure(model) behavior_valid = self._validate_behavior(model) performance_valid = self._validate_performance(model) return ValidationResult(structure_valid, behavior_valid, performance_valid) ``` ### 2. Testing Pattern ```python # @testing_pattern class TestingPattern: """ Pattern for comprehensive testing. See [[docs/guides/testing_guide|Testing Guide]] """ def test_suite(self) -> TestResults: """Run complete test suite.""" unit_results = self._run_unit_tests() integration_results = self._run_integration_tests() system_results = self._run_system_tests() return TestResults(unit_results, integration_results, system_results) ``` ## Best Practices ### 1. Code Organization - Follow [[docs/guides/code_organization|Code Organization Guide]] - Use [[docs/guides/naming_conventions|Naming Conventions]] - Implement [[docs/guides/documentation_standards|Documentation Standards]] ### 2. Performance Optimization - Follow [[docs/guides/performance_optimization|Optimization Guide]] - Use [[docs/guides/profiling_guide|Profiling Guide]] - Monitor [[docs/guides/performance_metrics|Performance Metrics]] ### 3. Quality Assurance - Implement [[docs/guides/testing_guide|Testing Guidelines]] - Follow [[docs/guides/code_review|Code Review Process]] - Use [[docs/guides/validation_framework|Validation Framework]] ## Related Documentation - [[knowledge_base/cognitive/cognitive_science|Cognitive Science Theory]] - [[docs/api/api_reference|API Reference]] - [[docs/guides/system_integration|System Integration]] - [[docs/guides/validation_guide|Validation Guide]] ## References - [[knowledge_base/cognitive/active_inference|Active Inference]] - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]] - [[docs/concepts/theoretical_foundations|Theoretical Foundations]]