--- title: Active Inference Learning Path type: learning_path status: stable created: 2024-02-07 tags: - active_inference - learning - progression semantic_relations: - type: implements links: [[learning_path_template]] - type: relates links: - [[knowledge_base/cognitive/active_inference]] - [[knowledge_base/mathematics/free_energy_theory]] --- # Active Inference Learning Path ## Overview This learning path guides you through understanding and implementing active inference, from foundational concepts to advanced applications. You'll learn the theoretical principles, mathematical foundations, and practical implementations. ## Prerequisites ### Required Knowledge - [[knowledge_base/mathematics/probability_theory|Probability Theory]] - [[knowledge_base/mathematics/information_theory|Information Theory]] - [[knowledge_base/mathematics/statistical_foundations|Statistical Foundations]] ### Recommended Background - [[knowledge_base/cognitive/bayesian_brain|Bayesian Brain]] - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]] - Python programming experience ## Learning Progression ### 1. Foundation (Week 1-2) #### Core Concepts - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - [[knowledge_base/cognitive/predictive_processing|Predictive Processing]] - [[knowledge_base/cognitive/active_inference|Active Inference Basics]] #### Practical Exercises - [[examples/basic_belief_updating|Basic Belief Updating]] - [[examples/simple_prediction|Simple Prediction Exercise]] #### Learning Objectives - Understand the free energy principle - Grasp predictive processing fundamentals - Implement basic belief updating ### 2. Mathematical Framework (Week 3-4) #### Advanced Concepts - [[knowledge_base/mathematics/variational_methods|Variational Methods]] - [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]] - [[knowledge_base/mathematics/expected_free_energy|Expected Free Energy]] #### Implementation Practice - [[examples/variational_inference|Variational Inference]] - [[examples/free_energy_computation|Free Energy Computation]] #### Learning Objectives - Master variational inference - Implement free energy computation - Understand expected free energy ### 3. Implementation (Week 5-6) #### Core Components - [[knowledge_base/mathematics/belief_updating|Belief Updating]] - [[knowledge_base/mathematics/policy_selection|Policy Selection]] - [[knowledge_base/mathematics/action_distribution|Action Distribution]] #### Projects - [[examples/active_inference_basic|Basic Active Inference Agent]] - [[examples/pomdp_agent|POMDP Implementation]] #### Learning Objectives - Implement complete active inference agent - Master POMDP framework integration - Handle real-world applications ### 4. Advanced Topics (Week 7-8) #### Specialized Areas - [[knowledge_base/mathematics/path_integral_theory|Path Integral Methods]] - [[knowledge_base/cognitive/hierarchical_processing|Hierarchical Models]] - [[knowledge_base/cognitive/social_cognition|Social Active Inference]] #### Advanced Projects - [[examples/hierarchical_agent|Hierarchical Agent]] - [[examples/multi_agent|Multi-Agent System]] #### Learning Objectives - Implement hierarchical models - Develop multi-agent systems - Apply to complex domains ## Study Resources ### Core Reading - [[knowledge_base/cognitive/free_energy_principle|Free Energy Principle]] - [[knowledge_base/mathematics/active_inference_theory|Active Inference Theory]] - [[knowledge_base/cognitive/active_inference|Active Inference Overview]] ### Code Examples - [[examples/active_inference_basic|Basic Implementation]] - [[examples/pomdp_agent|POMDP Example]] - [[examples/hierarchical_agent|Hierarchical Example]] ### Additional Resources - Research papers collection - Video tutorials - Community discussions ## Assessment ### Knowledge Checkpoints 1. Foundation: Free energy and predictive processing 2. Mathematics: Variational methods and inference 3. Implementation: Agent architecture and POMDP 4. Advanced: Hierarchical and multi-agent systems ### Projects 1. Mini-project: Basic belief updating system 2. Implementation: Active inference agent 3. Final project: Complex application domain ### Success Criteria - Theoretical understanding demonstrated - Working implementations completed - Advanced concepts mastered - Real-world application developed ## Next Steps ### Advanced Paths - [[learning_paths/hierarchical_modeling|Hierarchical Modeling]] - [[learning_paths/multi_agent_systems|Multi-Agent Systems]] - [[learning_paths/robotics_control|Robotics Control]] ### Specializations - [[specializations/neuroscience|Computational Neuroscience]] - [[specializations/robotics|Robotics and Control]] - [[specializations/ai|Artificial Intelligence]] ## Related Paths ### Prerequisites - [[learning_paths/probability_theory|Probability Theory]] - [[learning_paths/information_theory|Information Theory]] ### Follow-up Paths - [[learning_paths/advanced_ai|Advanced AI]] - [[learning_paths/cognitive_architectures|Cognitive Architectures]] ## Implementation Examples ### Basic Examples ```python # Basic active inference agent structure class ActiveInferenceAgent: def __init__(self, model_params): self.beliefs = initialize_beliefs() self.policies = generate_policies() def update_beliefs(self, observation): # Belief updating using variational inference pass def select_action(self): # Policy selection using expected free energy pass ``` ### Advanced Implementation ```python # Hierarchical active inference class HierarchicalAgent: def __init__(self, levels): self.levels = [ ActiveInferenceAgent(level_params) for level_params in levels ] def update(self, observation): # Hierarchical message passing for level in self.levels: level.update_beliefs(observation) prediction = level.generate_prediction() observation = prediction # For next level ``` ## Common Challenges ### Theoretical Challenges - Understanding variational inference - Grasping hierarchical processing - Interpreting free energy ### Implementation Challenges - Numerical stability - Performance optimization - Model design ### Solutions - Start with simple examples - Use provided templates - Follow progressive complexity