--- type: matrix_spec id: B_matrix_001 matrix_type: transition created: 2024-03-15 modified: 2024-03-15 complexity: advanced tags: - matrix - transition - active-inference - dynamics - probability - control related_spaces: - [[s_space]] - [[pi_space]] - [[belief_space]] semantic_relations: - type: implements links: - [[markov_property]] - [[transition_model]] - type: influences links: - [[policy_selection]] - [[state_prediction]] - type: relates_to links: - [[dynamics_model]] - [[control_theory]] --- ## Overview The B-matrix is a fundamental component in POMDPs and active inference frameworks, representing state transition probabilities under different actions. It encodes the dynamics of the environment and how actions influence state changes, forming the basis for prediction, planning, and control. ## Core Concepts ### Fundamental Definition - [[transition_probability]] - Basic concept - Conditional probability P(s'|s,π) - State transitions - Action influence - Temporal dynamics ### Key Properties - [[markov_property]] - Memory independence - History independence - Current state sufficiency - Future prediction ### Structural Characteristics - [[matrix_structure]] - Organization - Dimensionality - Sparsity patterns - Symmetry properties - Conservation laws ## Mathematical Framework ### Formal Definition ```math B_{ijk} = P(s'_i|s_j,π_k) # Constraints ∑_i B_{ijk} = 1 ∀j,k B_{ijk} ≥ 0 ∀i,j,k ``` ### Matrix Structure ```yaml dimensions: rows: num_states # Next state (s') cols: num_states # Current state (s) depth: num_actions # Actions/policies (π) constraints: probability: - sum(axis=0) == 1.0 # Column-wise normalization - all_values >= 0 # Non-negative probabilities structure: - rows == cols # Square matrix per action - depth == num_policies ``` ### Probabilistic Properties - [[transition_properties]] - Characteristics - Stochasticity - Ergodicity - Reversibility - Detailed balance ## Implementation Details ### Data Structures #### Basic Structure ```python class BMatrix: def __init__(self, num_states: int, num_actions: int): self.B = np.zeros((num_states, num_states, num_actions)) self.initialize_transitions() def initialize_transitions(self): """Initialize with identity or prior knowledge""" for a in range(self.num_actions): self.B[:,:,a] = np.eye(self.num_states) # Start with self-transitions ``` #### Advanced Features ```python def get_transition_distribution(self, state: int, action: int) -> Distribution: """Get probability distribution over next states""" return Distribution(self.B[:, state, action]) def sample_next_state(self, state: int, action: int) -> int: """Sample next state from transition distribution""" return np.random.choice( self.num_states, p=self.B[:, state, action] ) ``` ### Storage Formats - [[matrix_storage]] - Data management - Dense arrays - Sparse representations - Compressed formats - Memory mapping ### Computational Methods - [[transition_computation]] - Processing - Matrix operations - Parallel computation - GPU acceleration - Distributed processing ## Learning and Adaptation ### Learning Methods #### Maximum Likelihood ```python def update_transitions_ml(self, state: int, action: int, next_state: int, learning_rate: float): """Update transitions using maximum likelihood""" target = np.zeros(self.num_states) target[next_state] = 1 self.B[:, state, action] = (1 - learning_rate) * self.B[:, state, action] + \ learning_rate * target ``` #### Bayesian Updates ```python def update_transitions_bayes(self, state: int, action: int, next_state: int, prior_strength: float): """Update transitions using Bayesian inference""" self.counts[next_state, state, action] += 1 alpha = self.counts[:, state, action] self.B[:, state, action] = dirichlet.mean(alpha + prior_strength) ``` ### Structure Learning - [[causal_discovery]] - Structure identification - Sparsity patterns - Invariant relationships - Causal mechanisms - Independence testing ### Online Adaptation - [[dynamic_learning]] - Real-time updates - Incremental learning - Adaptive rates - Forgetting factors - Confidence tracking ## Applications ### Planning and Control #### Policy Evaluation ```python def evaluate_policy(self, policy: np.ndarray, horizon: int) -> np.ndarray: """Evaluate state occupancy under policy""" state_dist = initial_distribution for t in range(horizon): action = policy[t] state_dist = self.B[:,:,action] @ state_dist return state_dist ``` #### Optimal Control - [[optimal_control]] - Control methods - LQR formulation - Model predictive control - Stochastic optimal control - Risk-sensitive control ### Prediction and Simulation #### Forward Simulation ```python def simulate_trajectory(self, initial_state: int, policy: List[int], num_samples: int) -> np.ndarray: """Simulate multiple trajectories under policy""" trajectories = np.zeros((num_samples, len(policy) + 1)) trajectories[:,0] = initial_state for t, action in enumerate(policy): for n in range(num_samples): current_state = int(trajectories[n,t]) trajectories[n,t+1] = self.sample_next_state(current_state, action) return trajectories ``` #### State Prediction - [[state_prediction]] - Future states - Expected states - Uncertainty propagation - Confidence bounds - Risk assessment ## Integration with Other Components ### With State Space - [[state_space_integration]] - State representation - State encoding - Dimensionality - Constraints - Invariants ### With Action Space - [[action_space_integration]] - Action effects - Action encoding - Feasibility - Constraints - Cost models ### With Observation Model - [[observation_integration]] - Perception - Hidden states - Sensor models - Uncertainty - Filtering ## Advanced Topics ### Information Theory - [[transition_information]] - Information measures - Entropy rate - Channel capacity - Information flow - Predictive information ### Geometric Properties - [[transition_geometry]] - Geometric aspects - Manifold structure - Geodesics - Parallel transport - Curvature ### Stability Analysis - [[transition_stability]] - Stability properties - Fixed points - Attractors - Lyapunov stability - Structural stability ## Optimization and Efficiency ### Computational Optimization - [[computation_optimization]] - Performance - Matrix operations - Memory usage - Cache efficiency - Parallelization ### Numerical Stability - [[numerical_methods]] - Numerical issues - Conditioning - Error propagation - Precision control - Stability preservation ### Resource Management - [[resource_optimization]] - Resources - Memory allocation - Computation scheduling - Load balancing - Power efficiency ## Best Practices ### Implementation Guidelines - [[implementation_guide]] - Development - Code structure - Error handling - Testing strategies - Documentation ### Validation Methods - [[validation_methods]] - Quality assurance - Unit testing - Integration testing - Performance testing - Validation metrics ### Maintenance Procedures - [[maintenance_procedures]] - Upkeep - Updates - Monitoring - Debugging - Optimization ## References - [[markov_decision_process]] - [[transition_learning]] - [[control_theory]] - [[information_theory]] - [[optimization_methods]] ## See Also - [[a_matrix]] - Action model - [[d_matrix]] - Prior preferences - [[state_space]] - State representation - [[policy_space]] - Action policies - [[active_inference]] - Framework - [[control_theory]] - Control principles