# AI Documentation Style Guide --- title: AI Documentation Style Guide type: guide status: stable created: 2024-02-06 tags: - style - ai - documentation - machine-readable related: - [[machine_readability]] - [[knowledge_organization]] - [[documentation_standards]] --- ## Overview This guide establishes documentation standards optimized for both human readability and machine processing, enabling hyper-intelligent agents to effectively navigate and utilize the knowledge base. ## Machine-Readable Structure ### Metadata Standards ```yaml --- title: Document Title type: [concept|guide|api|example|template] status: [draft|stable|deprecated] created: YYYY-MM-DD updated: YYYY-MM-DD complexity: [basic|intermediate|advanced] processing_priority: [1-5] semantic_relations: - type: prerequisite links: [[prerequisite_doc]] - type: implements links: [[implementation_doc]] tags: - category - subcategory - specific_topic --- ``` ### Semantic Markup ```markdown #BEGIN_CONCEPT key_concept_name Core concept definition and explanation #END_CONCEPT #BEGIN_IMPLEMENTATION Implementation details #END_IMPLEMENTATION #BEGIN_VALIDATION Validation criteria #END_VALIDATION ``` ## Knowledge Graph Structure ### Relationship Types - **Hierarchical** - `is_a`: Inheritance relationships - `part_of`: Compositional relationships - `implements`: Implementation relationships ### Link Annotations ```markdown - [[concept]] {type: prerequisite, weight: 0.8} - [[implementation]] {type: implements, confidence: 0.9} - [[related_concept]] {type: semantic_similarity, score: 0.85} ``` ### Graph Metadata ```yaml graph_properties: density: 0.7 centrality: 0.8 cluster_coefficient: 0.6 ``` ## Machine Learning Integration ### Training Data Markers ```python # @training_example def example_function(): """ This example demonstrates concept X. Training labels: [concept_x, implementation, basic] """ pass ``` ### Model References ```yaml model_integration: embeddings: sentence-transformers/all-mpnet-base-v2 classifier: cognitive_model_classifier_v1 validation: validation_model_v1 ``` ### Performance Metrics ```python # @performance_metrics { "accuracy": 0.95, "latency": "10ms", "resource_usage": "150MB" } ``` ## Intelligent Processing Guidelines ### 1. Semantic Clarity - Use precise, unambiguous terminology - Maintain consistent concept references - Provide explicit relationship definitions ### 2. Context Preservation ```markdown #BEGIN_CONTEXT - Execution environment: [[runtime_environment]] - Required capabilities: [[capability_list]] - Constraints: [[system_constraints]] #END_CONTEXT ``` ### 3. Validation Hooks ```python # @validation_hook def validate_implementation(): """ Validation criteria: 1. [[requirement_1]] 2. [[requirement_2]] """ pass ``` ## File Organization ### Directory Structure ``` documentation/ ├── concepts/ # Foundational knowledge │ ├── atomic/ # Indivisible concepts │ └── composite/ # Combined concepts ├── implementations/ # Concrete implementations │ ├── core/ # Core functionality │ └── extensions/ # Extended features └── validations/ # Validation criteria ``` ### File Naming ```python naming_pattern = { 'concepts': 'concept_{category}_{name}.md', 'implementations': 'impl_{system}_{component}.md', 'validations': 'val_{type}_{target}.md' } ``` ## Processing Instructions ### 1. Priority Levels ```yaml processing_priority: P1: "Critical path concepts" P2: "Core dependencies" P3: "Supporting information" P4: "Examples and extensions" P5: "Additional context" ``` ### 2. Processing Directives ```markdown #PROCESS_MODE: sequential|parallel #DEPENDENCY_CHECK: strict|flexible #VALIDATION_LEVEL: basic|complete ``` ### 3. Resource Management ```yaml resource_requirements: memory: "4GB" processing_time: "30s" api_calls: 10 ``` ## Validation Framework ### 1. Consistency Checks ```python # @consistency_check def verify_documentation(): """ Verify: 1. Link integrity 2. Semantic consistency 3. Implementation alignment """ pass ``` ### 2. Completeness Metrics ```yaml completeness_criteria: concepts: 0.95 implementations: 0.90 validations: 0.85 cross_references: 0.80 ``` ### 3. Quality Assurance ```python # @quality_metrics { "clarity_score": 0.9, "completeness_score": 0.85, "consistency_score": 0.95 } ``` ## Integration Examples ### 1. Knowledge Integration ```python # Example of knowledge integration from cognitive_system import KnowledgeGraph graph = KnowledgeGraph() graph.add_concept("[[concept_name]]", { "relationships": ["[[related_concept]]"], "implementations": ["[[implementation]]"], "validations": ["[[validation]]"] }) ``` ### 2. Processing Pipeline ```mermaid graph TD A[Parse Documentation] --> B[Extract Knowledge] B --> C[Build Graph] C --> D[Validate] D --> E[Integrate] ``` ### 3. Validation Flow ```mermaid graph LR A[Documentation] --> B[Static Analysis] B --> C[Semantic Validation] C --> D[Integration Testing] D --> E[Knowledge Verification] ``` ## Related Documentation - [[machine_readability]] - [[knowledge_graph_structure]] - [[validation_framework]] - [[ai_processing_guidelines]] ## References - [[documentation_standards]] - [[machine_learning_integration]] - [[knowledge_representation]] - [[validation_methods]]