# AI-Oriented Additional Folders --- title: AI Additional Folders Guide type: guide status: stable created: 2024-02-06 tags: - organization - structure - ai - extensions related: - [[ai_file_organization]] - [[ai_documentation_style]] - [[knowledge_organization]] --- ## Overview This guide defines additional folder structures and organization patterns optimized for advanced AI processing and knowledge management. ## Extended Directory Structure ### Research Artifacts ``` research/ ├── experiments/ # Experiment specifications │ ├── designs/ # Experimental designs │ ├── protocols/ # Experimental protocols │ └── results/ # Results and analysis │ ├── papers/ # Research papers │ ├── drafts/ # Work in progress │ ├── published/ # Published papers │ └── references/ # Reference materials │ └── data/ # Research data ├── raw/ # Raw data ├── processed/ # Processed data └── analysis/ # Analysis results ``` ### Knowledge Embeddings ``` embeddings/ ├── vectors/ # Embedding vectors │ ├── concepts/ # Concept embeddings │ ├── documents/ # Document embeddings │ └── relations/ # Relationship embeddings │ ├── models/ # Embedding models │ ├── trained/ # Trained models │ ├── checkpoints/ # Training checkpoints │ └── configs/ # Model configurations │ └── analysis/ # Embedding analysis ├── similarity/ # Similarity matrices ├── clusters/ # Cluster analysis └── visualization/ # Embedding visualizations ``` ### Semantic Processing ``` semantic/ ├── ontologies/ # Domain ontologies │ ├── core/ # Core domain concepts │ ├── relations/ # Relationship definitions │ └── mappings/ # Cross-domain mappings │ ├── reasoning/ # Reasoning engines │ ├── rules/ # Inference rules │ ├── logic/ # Logical frameworks │ └── constraints/ # Constraint definitions │ └── queries/ # Semantic queries ├── templates/ # Query templates ├── patterns/ # Search patterns └── results/ # Query results ``` ### Interactive Learning ``` interactive/ ├── tutorials/ # Interactive tutorials │ ├── basic/ # Basic concepts │ ├── advanced/ # Advanced topics │ └── specialized/ # Domain-specific │ ├── notebooks/ # Jupyter notebooks │ ├── examples/ # Example notebooks │ ├── exercises/ # Practice exercises │ └── solutions/ # Exercise solutions │ └── simulations/ # Interactive simulations ├── environments/ # Simulation environments ├── scenarios/ # Scenario definitions └── results/ # Simulation results ``` ## Metadata Requirements ### Research Metadata ```yaml research_metadata: experiment: id: string type: string status: string dependencies: list validation: object paper: title: string authors: list status: string related_experiments: list data: source: string format: string schema: object validation: object ``` ### Embedding Metadata ```yaml embedding_metadata: vector: model: string dimensions: integer timestamp: datetime source: string model: architecture: string parameters: object performance: object analysis: method: string parameters: object results: object ``` ### Semantic Metadata ```yaml semantic_metadata: ontology: domain: string version: string dependencies: list validation: object reasoning: engine: string rules: list constraints: object query: type: string pattern: string parameters: object ``` ## Processing Instructions ### Research Processing ```python # @research_processing def process_research(): """ Processing steps: 1. Extract experimental data 2. Analyze results 3. Generate visualizations 4. Update knowledge base """ pass ``` ### Embedding Processing ```python # @embedding_processing def process_embeddings(): """ Processing steps: 1. Generate embeddings 2. Update vector store 3. Analyze relationships 4. Optimize representations """ pass ``` ### Semantic Processing ```python # @semantic_processing def process_semantics(): """ Processing steps: 1. Parse ontologies 2. Apply reasoning rules 3. Execute queries 4. Update knowledge graph """ pass ``` ## Integration Points ### Research Integration ```mermaid graph TD A[Experiments] --> B[Analysis] B --> C[Papers] C --> D[Knowledge Base] D --> E[Semantic Graph] ``` ### Embedding Integration ```mermaid graph LR A[Documents] --> B[Vectors] B --> C[Analysis] C --> D[Knowledge Graph] D --> E[Reasoning] ``` ### Semantic Integration ```mermaid graph TD A[Ontologies] --> B[Reasoning] B --> C[Queries] C --> D[Results] D --> E[Knowledge Update] ``` ## Related Documentation - [[ai_file_organization]] - [[research_management]] - [[embedding_framework]] - [[semantic_processing]] ## References - [[research_workflows]] - [[embedding_techniques]] - [[semantic_frameworks]] - [[integration_patterns]]