# Content Management Guide --- title: Content Management Guide type: guide status: stable created: 2024-02-06 tags: - content - management - maintenance - organization semantic_relations: - type: implements links: [[documentation_standards]] - type: relates links: - [[knowledge_organization]] - [[version_control]] --- ## Overview This guide establishes comprehensive content management practices for maintaining, updating, and evolving documentation in our cognitive modeling framework. ## Content Lifecycle ### 1. Content Creation ```python # @content_creation content_workflow = { "planning": { "needs_analysis": ["[[documentation_standards]]", "[[knowledge_organization]]"], "structure_design": ["[[ai_documentation_style]]", "[[linking_patterns]]"], "template_selection": ["[[ai_concept_template]]", "[[package_component]]"] }, "development": { "content_writing": ["[[documentation_guide]]", "[[example_writing]]"], "review_process": ["[[validation_framework]]", "[[quality_metrics]]"], "integration": ["[[linking_completeness]]", "[[knowledge_organization]]"] }, "publication": { "validation": ["[[validation_tools]]", "[[quality_metrics]]"], "deployment": ["[[git_workflow]]", "[[version_control]]"], "announcement": ["[[changelog]]", "[[release_management]]"] } } ``` ### 2. Content Maintenance ```python # @maintenance_workflow maintenance_process = { "regular_review": { "schedule": "Monthly", "tasks": [ "Content accuracy check", "Link validation", "Quality assessment" ], "tools": ["[[validation_tools]]", "[[analysis_tools]]"] }, "updates": { "schedule": "As needed", "triggers": [ "New features", "Bug fixes", "User feedback" ], "process": ["[[version_control]]", "[[changelog]]"] }, "archival": { "schedule": "Yearly", "tasks": [ "Obsolete content review", "Version archiving", "Migration planning" ], "tools": ["[[archival_tools]]", "[[migration_guide]]"] } } ``` ## Content Organization ### 1. Repository Structure See [[ai_folder_structure]] for detailed organization. ```python # @repository_structure content_structure = { "active_content": { "location": "docs/", "organization": "[[knowledge_organization]]", "management": "[[version_control]]" }, "archived_content": { "location": "archive/", "organization": "[[archival_structure]]", "management": "[[archival_policy]]" }, "temporary_content": { "location": "drafts/", "organization": "[[draft_management]]", "management": "[[review_process]]" } } ``` ### 2. Version Management See [[version_control]] for implementation details. ```python # @version_management version_strategy = { "branching": { "main": "Stable documentation", "develop": "Work in progress", "feature": "New content development", "release": "Version preparation" }, "tagging": { "pattern": "v{major}.{minor}.{patch}", "rules": "[[versioning_standards]]", "process": "[[release_management]]" } } ``` ## Content Processing ### 1. Content Pipeline ```python # @content_pipeline class ContentPipeline: """ Content processing pipeline. See [[ai_semantic_processing]] for details. """ def __init__(self): self.validator = ContentValidator() self.processor = ContentProcessor() self.indexer = ContentIndexer() self.graph = KnowledgeGraph() def process_content(self, content: Content) -> ProcessedContent: """ Process content through pipeline. See [[validation_framework]] for rules. """ # Pre-processing self._preprocess_content(content) # Validation validation_result = self.validator.validate(content) if not validation_result.is_valid: self._handle_validation_errors(validation_result.errors) # Semantic Processing processed_content = self.processor.process(content) self._extract_semantic_relations(processed_content) # Knowledge Graph Integration self.graph.integrate_content(processed_content) # Indexing self.indexer.index(processed_content) # Post-processing self._update_related_content(processed_content) self._verify_integration(processed_content) return processed_content def _preprocess_content(self, content: Content): """ Prepare content for processing. See [[ai_documentation_style]] for formatting rules. """ # Format validation self._validate_format(content) # Link extraction self._extract_links(content) # Metadata validation self._validate_metadata(content) def _extract_semantic_relations(self, content: ProcessedContent): """ Extract and validate semantic relationships. See [[linking_patterns]] for relationship types. """ # Extract relationships relationships = self._parse_relationships(content) # Validate against known patterns self._validate_relationships(relationships) # Update knowledge graph self._update_graph_relationships(relationships) def _update_related_content(self, content: ProcessedContent): """ Update related content based on changes. See [[linking_completeness]] for bidirectional linking. """ # Find affected documents affected_docs = self._find_affected_documents(content) # Update bidirectional links self._update_bidirectional_links(affected_docs) # Validate consistency self._validate_consistency(affected_docs) ``` ### 2. Quality Control Implementation ```python # @quality_control class QualityControl: """ Content quality control system. See [[quality_metrics]] for criteria. """ def __init__(self): self.metrics = QualityMetrics() self.checker = StyleChecker() self.validator = LinkValidator() self.analyzer = ContentAnalyzer() def check_quality(self, content: Content) -> QualityReport: """ Check content quality. See [[validation_framework]] for rules. """ # Style Analysis style_report = self._analyze_style(content) # Link Validation link_report = self._validate_links(content) # Content Analysis content_report = self._analyze_content(content) # Integration Check integration_report = self._check_integration(content) # Generate Quality Report return self._generate_report( style_report, link_report, content_report, integration_report ) def _analyze_style(self, content: Content) -> StyleReport: """ Analyze content style. See [[ai_documentation_style]] for style rules. """ return self.checker.check_style(content, { "formatting": self._check_formatting(content), "structure": self._check_structure(content), "consistency": self._check_consistency(content) }) def _validate_links(self, content: Content) -> LinkReport: """ Validate content links. See [[linking_validation]] for validation rules. """ return self.validator.validate_links(content, { "existence": self._check_link_existence(content), "bidirectional": self._check_bidirectional_links(content), "semantic": self._check_semantic_validity(content) }) def _analyze_content(self, content: Content) -> ContentReport: """ Analyze content quality. See [[quality_metrics]] for quality criteria. """ return self.analyzer.analyze_content(content, { "completeness": self._check_completeness(content), "accuracy": self._check_accuracy(content), "relevance": self._check_relevance(content) }) ``` ## Implementation Integration ### 1. Knowledge Graph Integration ```python # @graph_integration class KnowledgeGraphIntegrator: """ Integrates content with knowledge graph. See [[knowledge_organization]] for structure. """ def __init__(self): self.graph = KnowledgeGraph() self.validator = GraphValidator() self.indexer = GraphIndexer() def integrate_content(self, content: ProcessedContent): """ Integrate content into knowledge graph. See [[linking_completeness]] for integration rules. """ # Extract graph elements nodes = self._extract_nodes(content) edges = self._extract_edges(content) # Validate graph elements self._validate_graph_elements(nodes, edges) # Update graph self._update_graph(nodes, edges) # Verify integration self._verify_integration(content) def _extract_nodes(self, content: ProcessedContent) -> List[Node]: """Extract graph nodes from content.""" return [ self._create_node(concept) for concept in content.concepts ] def _extract_edges(self, content: ProcessedContent) -> List[Edge]: """Extract graph edges from content.""" return [ self._create_edge(relation) for relation in content.relations ] ``` ### 2. Version Control Integration ```python # @version_control class VersionController: """ Manages content versioning. See [[version_control]] for versioning rules. """ def __init__(self): self.repo = Repository() self.validator = VersionValidator() self.migrator = ContentMigrator() def manage_version(self, content: Content, version: Version): """ Manage content version. See [[versioning_standards]] for version rules. """ # Validate version self._validate_version(version) # Create version branch branch = self._create_version_branch(version) # Update content self._update_content(content, version) # Validate changes self._validate_changes(content) # Merge changes self._merge_changes(branch) def _create_version_branch(self, version: Version) -> Branch: """Create version control branch.""" return self.repo.create_branch( name=f"version/{version}", base="develop" ) ``` ## Review Process ### 1. Review Workflow ```mermaid graph TD A[Content Creation] --> B[Initial Review] B --> C[Technical Review] C --> D[Quality Check] D --> E[Final Approval] E --> F[Publication] ``` ### 2. Review Criteria ```python # @review_criteria review_requirements = { "technical_accuracy": { "concept_correctness": True, "implementation_accuracy": True, "code_validity": True }, "documentation_quality": { "clarity": 0.9, # 90% clarity score "completeness": 0.95, # 95% completeness "consistency": 1.0 # 100% consistency }, "integration": { "link_validity": 1.0, # All links valid "cross_references": True, # Cross-refs present "knowledge_graph": True # Graph integration } } ``` ## Maintenance Procedures ### 1. Regular Updates ```python # @update_procedures update_workflow = { "scheduled_review": { "frequency": "Monthly", "tasks": [ "Content review", "Link validation", "Quality assessment" ] }, "content_updates": { "triggers": [ "New features", "Bug fixes", "User feedback" ], "process": "[[update_process]]" }, "version_control": { "branching": "[[git_workflow]]", "releases": "[[release_management]]", "changelog": "[[changelog]]" } } ``` ### 2. Content Migration ```python # @migration_procedures migration_workflow = { "planning": { "impact_analysis": True, "timeline_planning": True, "communication_plan": True }, "execution": { "content_update": True, "link_updates": True, "validation": True }, "verification": { "quality_check": True, "integration_test": True, "user_acceptance": True } } ``` ## Archival Strategy ### 1. Content Archival ```python # @archival_strategy archival_rules = { "criteria": { "age": "> 2 years", "relevance": "Low", "usage": "< 10 views/month" }, "process": { "review": "Manual review", "approval": "Team lead", "archival": "Automated" }, "storage": { "location": "archive/", "format": "Markdown + metadata", "indexing": "Required" } } ``` ### 2. Version Archives ```python # @version_archives archive_management = { "major_versions": { "retention": "Permanent", "format": "Full snapshot", "accessibility": "Public" }, "minor_versions": { "retention": "2 years", "format": "Differential", "accessibility": "Internal" }, "patches": { "retention": "6 months", "format": "Changelog only", "accessibility": "Internal" } } ``` ## Best Practices ### 1. Content Creation - Follow [[documentation_standards]] - Use [[ai_documentation_style]] - Implement [[linking_patterns]] - Validate with [[quality_metrics]] ### 2. Content Maintenance - Regular reviews - Proactive updates - Link validation - Quality monitoring ### 3. Version Control - Follow [[git_workflow]] - Maintain [[changelog]] - Use [[version_tags]] - Document migrations ## Related Documentation - [[documentation_standards]] - [[knowledge_organization]] - [[version_control]] - [[quality_metrics]] ## References - [[documentation_guide]] - [[validation_framework]] - [[archival_policy]] - [[migration_guide]] ## Implementation Examples ### 1. Content Analysis Example ```python # @content_analysis class ContentAnalyzer: """ Detailed content analysis implementation. See [[quality_metrics]] for analysis criteria. """ def analyze_document(self, doc: Document) -> AnalysisResult: """ Perform comprehensive document analysis. Example: >>> analyzer = ContentAnalyzer() >>> result = analyzer.analyze_document(doc) >>> print(f"Quality Score: {result.quality_score}") Quality Score: 0.95 """ # Structure Analysis structure_score = self._analyze_structure(doc) print(f"Structure Analysis: {structure_score:.2f}") # Content Quality quality_score = self._analyze_quality(doc) print(f"Quality Analysis: {quality_score:.2f}") # Link Analysis link_score = self._analyze_links(doc) print(f"Link Analysis: {link_score:.2f}") return AnalysisResult( structure=structure_score, quality=quality_score, links=link_score, overall=np.mean([structure_score, quality_score, link_score]) ) def _analyze_structure(self, doc: Document) -> float: """ Analyze document structure. Example structure check: ```markdown # Title ## Overview Content... ## Implementation Code... ``` """ required_sections = { "overview": r"^## Overview", "implementation": r"^## Implementation", "examples": r"^## Examples", "references": r"^## References" } scores = [] for section, pattern in required_sections.items(): if re.search(pattern, doc.content, re.MULTILINE): scores.append(1.0) else: print(f"Missing section: {section}") scores.append(0.0) return np.mean(scores) def _analyze_quality(self, doc: Document) -> float: """ Analyze content quality. Example quality metrics: - Completeness: All sections have content - Clarity: Clear explanations and examples - Consistency: Consistent terminology """ metrics = { "completeness": self._check_completeness(doc), "clarity": self._check_clarity(doc), "consistency": self._check_consistency(doc) } for metric, score in metrics.items(): print(f"{metric.title()}: {score:.2f}") return np.mean(list(metrics.values())) def _analyze_links(self, doc: Document) -> float: """ Analyze document links. Example link analysis: - [[concept]] -> Valid concept link - [[implementation]] -> Valid implementation link - [[missing_doc]] -> Invalid link """ links = re.findall(r"\[\[(.*?)\]\]", doc.content) valid_links = 0 for link in links: if self._validate_link(link): valid_links += 1 else: print(f"Invalid link: {link}") return valid_links / len(links) if links else 1.0 ``` ### 2. Content Processing Example ```python # @content_processor class ContentProcessor: """ Detailed content processing implementation. See [[ai_semantic_processing]] for processing rules. """ def process_document(self, doc: Document) -> ProcessedDocument: """ Process document with detailed steps. Example: >>> processor = ContentProcessor() >>> processed = processor.process_document(doc) >>> print(f"Processed sections: {len(processed.sections)}") Processed sections: 5 """ # Extract metadata metadata = self._extract_metadata(doc) print(f"Extracted metadata: {metadata.keys()}") # Parse sections sections = self._parse_sections(doc) print(f"Found sections: {[s.title for s in sections]}") # Process content processed_sections = [] for section in sections: processed = self._process_section(section) processed_sections.append(processed) print(f"Processed section: {section.title}") # Extract and validate links links = self._extract_links(doc) valid_links = self._validate_links(links) print(f"Valid links: {len(valid_links)}/{len(links)}") return ProcessedDocument( metadata=metadata, sections=processed_sections, links=valid_links ) def _extract_metadata(self, doc: Document) -> dict: """ Extract document metadata. Example metadata: ```yaml --- title: Document Title type: guide status: stable created: 2024-02-06 tags: [tag1, tag2] --- ``` """ try: metadata_match = re.match( r"---\n(.*?)\n---", doc.content, re.DOTALL ) if metadata_match: return yaml.safe_load(metadata_match.group(1)) return {} except Exception as e: print(f"Metadata extraction error: {e}") return {} def _parse_sections(self, doc: Document) -> List[Section]: """ Parse document sections. Example section structure: ```markdown ## Section Title Section content... ### Subsection Subsection content... ``` """ sections = [] current_section = None for line in doc.content.split("\n"): if line.startswith("## "): if current_section: sections.append(current_section) current_section = Section( title=line[3:].strip(), content=[], level=2 ) elif line.startswith("### "): if current_section: current_section.subsections.append( Section( title=line[4:].strip(), content=[], level=3 ) ) elif current_section: current_section.content.append(line) if current_section: sections.append(current_section) return sections def _process_section(self, section: Section) -> ProcessedSection: """ Process individual section. Example processing: 1. Format content 2. Extract code blocks 3. Process links 4. Validate structure """ # Process content formatted_content = self._format_content(section.content) # Extract code blocks code_blocks = self._extract_code_blocks(formatted_content) # Process links links = self._extract_section_links(formatted_content) # Create processed section return ProcessedSection( title=section.title, content=formatted_content, code_blocks=code_blocks, links=links, level=section.level ) ``` ### 3. Content Validation Example ```python # @content_validator class ContentValidator: """ Detailed content validation implementation. See [[validation_framework]] for validation rules. """ def validate_document(self, doc: Document) -> ValidationResult: """ Validate document with detailed checks. Example: >>> validator = ContentValidator() >>> result = validator.validate_document(doc) >>> print(f"Validation passed: {result.is_valid}") Validation passed: True """ # Structure validation structure_result = self._validate_structure(doc) print(f"Structure validation: {structure_result.status}") # Content validation content_result = self._validate_content(doc) print(f"Content validation: {content_result.status}") # Link validation link_result = self._validate_links(doc) print(f"Link validation: {link_result.status}") # Metadata validation metadata_result = self._validate_metadata(doc) print(f"Metadata validation: {metadata_result.status}") # Combine results is_valid = all([ structure_result.is_valid, content_result.is_valid, link_result.is_valid, metadata_result.is_valid ]) return ValidationResult( is_valid=is_valid, structure=structure_result, content=content_result, links=link_result, metadata=metadata_result ) def _validate_structure(self, doc: Document) -> ValidationResult: """ Validate document structure. Example structure requirements: 1. Has required sections 2. Proper heading hierarchy 3. Consistent formatting """ issues = [] # Check required sections missing_sections = self._check_required_sections(doc) if missing_sections: issues.append(f"Missing sections: {missing_sections}") # Check heading hierarchy hierarchy_issues = self._check_heading_hierarchy(doc) if hierarchy_issues: issues.extend(hierarchy_issues) # Check formatting formatting_issues = self._check_formatting(doc) if formatting_issues: issues.extend(formatting_issues) return ValidationResult( is_valid=len(issues) == 0, issues=issues ) ```