--- title: Predictive Network Implementation type: implementation_guide status: stable created: 2024-02-12 tags: - implementation - predictive-processing - neural-networks semantic_relations: - type: implements links: [[../../learning_paths/predictive_processing]] - type: relates links: - [[error_propagation]] - [[precision_mechanisms]] --- # Predictive Network Implementation ## Overview This guide provides a detailed implementation of a basic predictive processing network, focusing on the core mechanisms of prediction generation and error computation. ## Architecture ### Network Structure ```python class PredictiveLayer: def __init__(self, input_size: int, hidden_size: int, output_size: int): """Initialize a predictive processing layer. Args: input_size: Size of input features hidden_size: Size of hidden representation output_size: Size of predictions """ self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # Initialize weights self.W_hidden = torch.randn(input_size, hidden_size) * 0.1 self.W_pred = torch.randn(hidden_size, output_size) * 0.1 # Initialize biases self.b_hidden = torch.zeros(hidden_size) self.b_pred = torch.zeros(output_size) # Initialize precision (inverse variance) self.precision = torch.ones(output_size) class PredictiveNetwork: def __init__(self, layer_sizes: List[int]): """Initialize hierarchical predictive network. Args: layer_sizes: List of layer sizes from bottom to top """ self.layers = [] for i in range(len(layer_sizes) - 1): layer = PredictiveLayer( input_size=layer_sizes[i], hidden_size=layer_sizes[i] * 2, output_size=layer_sizes[i + 1] ) self.layers.append(layer) ``` ### Forward Pass ```python def forward(self, input_data: torch.Tensor) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: """Forward pass through the network. Args: input_data: Input tensor Returns: predictions: List of predictions at each layer prediction_errors: List of prediction errors """ current_input = input_data predictions = [] prediction_errors = [] # Bottom-up pass for layer in self.layers: # Generate prediction hidden = torch.tanh(current_input @ layer.W_hidden + layer.b_hidden) prediction = hidden @ layer.W_pred + layer.b_pred # Compute prediction error if len(predictions) > 0: error = current_input - prediction weighted_error = error * layer.precision prediction_errors.append(weighted_error) predictions.append(prediction) current_input = prediction return predictions, prediction_errors ``` ### Error Computation ```python def compute_errors(self, predictions: List[torch.Tensor], targets: List[torch.Tensor]) -> List[torch.Tensor]: """Compute prediction errors at each layer. Args: predictions: List of predictions targets: List of target values Returns: errors: List of prediction errors """ errors = [] for pred, target, layer in zip(predictions, targets, self.layers): error = target - pred weighted_error = error * layer.precision errors.append(weighted_error) return errors ``` ## Training ### Loss Function ```python def compute_loss(self, prediction_errors: List[torch.Tensor], precision_errors: List[torch.Tensor]) -> torch.Tensor: """Compute total loss from prediction and precision errors. Args: prediction_errors: List of prediction errors precision_errors: List of precision estimation errors Returns: total_loss: Combined loss value """ # Prediction error loss pred_loss = sum(torch.mean(error ** 2) for error in prediction_errors) # Precision error loss prec_loss = sum(torch.mean(error ** 2) for error in precision_errors) return pred_loss + 0.1 * prec_loss ``` ### Update Step ```python def update_step(self, loss: torch.Tensor, learning_rate: float = 0.01): """Perform one update step. Args: loss: Loss value learning_rate: Learning rate for updates """ # Compute gradients gradients = torch.autograd.grad(loss, self.parameters()) # Update parameters with torch.no_grad(): for param, grad in zip(self.parameters(), gradients): param -= learning_rate * grad ``` ## Usage Example ### Basic Training Loop ```python # Initialize network layer_sizes = [64, 32, 16] # Example sizes network = PredictiveNetwork(layer_sizes) # Training loop for epoch in range(num_epochs): for batch in data_loader: # Forward pass predictions, errors = network.forward(batch.inputs) # Compute loss loss = network.compute_loss(errors, []) # Update step network.update_step(loss) # Log progress if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss.item():.4f}") ``` ### Prediction Generation ```python def generate_predictions(self, input_data: torch.Tensor) -> List[torch.Tensor]: """Generate predictions for input data. Args: input_data: Input tensor Returns: predictions: List of predictions at each layer """ predictions, _ = self.forward(input_data) return predictions ``` ## Advanced Features ### Precision Estimation ```python def estimate_precision(self, errors: List[torch.Tensor], window_size: int = 100) -> List[torch.Tensor]: """Estimate precision based on prediction errors. Args: errors: List of prediction errors window_size: Window size for estimation Returns: precisions: Updated precision estimates """ precisions = [] for error in errors: # Compute running variance var = torch.mean(error ** 2, dim=0) # Update precision (inverse variance) precision = 1.0 / (var + 1e-6) precisions.append(precision) return precisions ``` ### Layer Normalization ```python def normalize_layer(self, activations: torch.Tensor, epsilon: float = 1e-5) -> torch.Tensor: """Apply layer normalization. Args: activations: Layer activations epsilon: Small constant for numerical stability Returns: normalized: Normalized activations """ mean = torch.mean(activations, dim=-1, keepdim=True) std = torch.std(activations, dim=-1, keepdim=True) return (activations - mean) / (std + epsilon) ``` ## Best Practices ### Initialization 1. Use small random weights 2. Initialize biases to zero 3. Set reasonable precision values 4. Validate layer sizes ### Training 1. Monitor convergence 2. Use appropriate learning rates 3. Implement early stopping 4. Save checkpoints ### Validation 1. Test prediction accuracy 2. Check error distributions 3. Validate precision estimates 4. Monitor layer activities ## Common Issues ### Numerical Stability 1. Use layer normalization 2. Add small constants to divisions 3. Clip gradient values 4. Monitor activation ranges ### Performance 1. Batch processing 2. GPU acceleration 3. Memory management 4. Efficient updates ## Related Documentation - [[error_propagation]] - [[precision_mechanisms]] - [[temporal_models]]